Calculus 2 : Calculus II

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #47 : Solving Integrals By Substitution

Evaluate the following integral:

\displaystyle \int 2t\cos(\sec(e^{3t^2}))dt

Possible Answers:

\displaystyle -\frac{1}{3}e^{3t^2}+C

\displaystyle \frac{1}{3}\cos(\sec(e^{3t^2}))+C

\displaystyle \frac{1}{3}e^{3t^2}+C

\displaystyle e^{3t^2}+C

Correct answer:

\displaystyle \frac{1}{3}e^{3t^2}+C

Explanation:

To evaluate the integral, we can first use the fact that cosine and secant are inverses of each other, so they cancel:

\displaystyle \int 2te^{3t^2}dt

Now, we must make the following substitution:

\displaystyle u=3t^2, du=6tdt

Rewriting the integral in terms of u and integrating, we get

\displaystyle \frac{1}{3}\int e^udu=\frac{1}{3}e^u+C

We used the following rule to integrate:

\displaystyle \int e^xdx=e^x+C

Finally, replace u with our original x term:

\displaystyle \frac{1}{3}e^{3t^2}+C

Example Question #48 : Solving Integrals By Substitution

\displaystyle \int x(x^2-2)^{\frac{1}{3}}dx

Possible Answers:

\displaystyle \frac{3}{2}(x^2-2)^{\frac{4}{3}}

\displaystyle \frac{3}{2}(x-2)^{\frac{4}{3}}+C

\displaystyle \frac{3}{2}(x^2-2)^{\frac{4}{3}}+C

\displaystyle \frac{3}{2}(u^2)^{\frac{4}{3}}+C

\displaystyle \frac{5}{2}(x^2-2)^{\frac{4}{3}}+C

Correct answer:

\displaystyle \frac{3}{2}(x^2-2)^{\frac{4}{3}}+C

Explanation:

To integrate this problem, you have to use "u" substitution. Assign \displaystyle x^2-2=u. Then, find du, which is 2x. That works out since we can then replace the other x in the original problem. We will have to offset the 2 though: \displaystyle du=2x; \frac{1}{2}du=x. Now plug in all the parts: \displaystyle \frac{1}{2}\int u^{\frac{1}{3}}du. Now, integrate as normal, remembering to raise the exponent by 1 and then also putting that result on the bottom: \displaystyle \frac{1}{2}(\frac{3}{4})(u^{\frac{4}{3}}). Simplify, add a C because it is an indefinite integral, and substitute your original expression back in: \displaystyle \frac{3}{2}(x^2-2)^{\frac{4}{3}}+C.

Example Question #49 : Solving Integrals By Substitution

\displaystyle \int \frac{x^2}{x^3-1}dx

Possible Answers:

\displaystyle \frac{1}{3}ln\left | x^3-1 \right |

\displaystyle \frac{1}{3}ln\left | x^2-1 \right |+C

\displaystyle 3ln\left | x^3-1 \right |+C

\displaystyle ln\left | x^3-1 \right |+C

\displaystyle \frac{1}{3}ln\left | x^3-1 \right |+C

Correct answer:

\displaystyle \frac{1}{3}ln\left | x^3-1 \right |+C

Explanation:

To integrate this problem, use "u" substitution. Assign \displaystyle u=x^3-1, \displaystyle du=3x^2; \frac{1}{3}du=x^2. Substitute everything in so you can integrate: \displaystyle \frac{1}{3}\int \frac{1}{u}du. Recall that when there is a single variable on the denominator, the integral is ln of that term. Therefore, after integrating, you get \displaystyle \frac{1}{3}ln\left | u \right |. Sub back in your original expression and add C because it is an indefinite integral: \displaystyle \frac{1}{3}ln\left | x^3-1 \right |+C.

Example Question #50 : Solving Integrals By Substitution

Evaluate the following integral using the substitution method:

\displaystyle \int^1_0 x^2(x^3+4)^3dx

Possible Answers:

\displaystyle \frac{5}{4}

\displaystyle \frac{1}{12}

\displaystyle \frac{123}{4}

\displaystyle \frac{61}{9}

\displaystyle \frac{1031}{24}

Correct answer:

\displaystyle \frac{123}{4}

Explanation:

\displaystyle \int^1_0 x^2(x^3+4)^3dx

Make the substitution:

\displaystyle u=x^3+4

\displaystyle du=3x^2dx

\displaystyle \frac{du}{3}=x^2dx

\displaystyle \int^1_0 \frac{u^3}{3}du=\frac{1}{12}u^4\left.\begin{matrix} \\ \end{matrix}\right|^1_0=\frac{1}{12}(x^3+4)^4 \left.\begin{matrix} \\ \end{matrix}\right|^1_0=\frac{123}{4}

Example Question #981 : Integrals

Solve: \displaystyle \int10e^{10x}.

Possible Answers:

\displaystyle 10e^x + C

\displaystyle e^{10x}+C

\displaystyle 10

\displaystyle \frac{e^x}{10} + C

\displaystyle e^x + C

Correct answer:

\displaystyle e^{10x}+C

Explanation:

Substitute \displaystyle u=10x, du = 10 dx:

\displaystyle \int e^{u}du

which is equal to

\displaystyle e^{u}+ C.

Replace u with 10x:

\displaystyle e^{10x}+C.

Example Question #982 : Integrals

\displaystyle \int cos^3xsinxdx

Possible Answers:

\displaystyle \frac{cos^2x}{2} +C

\displaystyle \frac{sin^4x}{4}

\displaystyle \frac{-cos^4x}{4} + C

\displaystyle cos^4x+C

\displaystyle \frac{cos^4x}{4} + C

Correct answer:

\displaystyle \frac{-cos^4x}{4} + C

Explanation:

Substitute \displaystyle u=cosx, du=-sinxdx:

\displaystyle \int- u^3du=-\frac{u^4}{4} + C.

Replace \displaystyle u=cos x:

\displaystyle \frac{-cos^4x}{4} + C.

 

Example Question #983 : Integrals

Solve \displaystyle \int sin^3x cos x dx.

Possible Answers:

\displaystyle \frac{sin^2x}{2} +C

\displaystyle 3sin^2x +C

\displaystyle sin^4x +C

\displaystyle cos^4x+C

\displaystyle \frac{sin^4x}{4} +C

Correct answer:

\displaystyle \frac{sin^4x}{4} +C

Explanation:

Substitute \displaystyle u=sin x, du=cosx:

\displaystyle \int u^3 du=\frac{u^4}{4} +C.

Replace \displaystyle u=sin x:

\displaystyle \frac{sin^4x}{4} +C.

Example Question #984 : Integrals

Solve \displaystyle \int 5e^{5x}dx.

Possible Answers:

\displaystyle e^{4x}+C

\displaystyle \frac{e^{6x}}{6} + C

\displaystyle e^{5x} + C

\displaystyle 5e^{x} + C

\displaystyle 5e^{4x} +C

Correct answer:

\displaystyle e^{5x} + C

Explanation:

Substitue \displaystyle u=5x, du=5.

\displaystyle \int e^udu=e^u+C.

Replace \displaystyle u=5x:

\displaystyle e^{5x} + C.

Example Question #985 : Integrals

Find \displaystyle \int \frac{dx}{(x+2)^4}.

Possible Answers:

\displaystyle \frac{-(x+2)^{-5}}{5}+C

\displaystyle ln((x+2)^4)+C

\displaystyle \frac{-(x+2)^{-3}}{3}+C

\displaystyle {(x+2)^{-4}}+C

\displaystyle 4ln(x+2)+C

Correct answer:

\displaystyle \frac{-(x+2)^{-3}}{3}+C

Explanation:

Substitute \displaystyle u=x+2, du=dx:

\displaystyle \int \frac{1}{u^4}du=-\frac{u^{-3}}{3}.

Replace \displaystyle u=x+2:

\displaystyle \frac{-(x+2)^{-3}}{3}+C

Example Question #986 : Integrals

Solve \displaystyle \int \frac{x^2}{x^3+1}.

Possible Answers:

\displaystyle ln\left | x+1\right | + C

\displaystyle \frac{1}{3}ln\left | x^3+1\right | + C

\displaystyle 1

\displaystyle ln\left | x^3+1\right | + C

\displaystyle \frac{x^4}{4}+\frac{x^3}{3}+C

Correct answer:

\displaystyle \frac{1}{3}ln\left | x^3+1\right | + C

Explanation:

Substitute \displaystyle u=x^3 + 1, du=3x^2 dx.

\displaystyle \int \frac{1}{3}u^{-1}du=\frac{1}{3}ln\left | u \right |+C.

Replace \displaystyle u=x^3+1:

\displaystyle \frac{1}{3}ln\left | x^3+1\right | + C.

Learning Tools by Varsity Tutors