Calculus 2 : Calculus II

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #671 : Finding Integrals

Evaluate the integral:

\displaystyle \int \frac{dx}{\sqrt{x+2}}

Possible Answers:

\displaystyle 2\sqrt{x+2}+C

\displaystyle \frac{\sqrt{x+2}}{2}+C

\displaystyle \sqrt{x+2}+C

\displaystyle 2\sqrt{x+2}

Correct answer:

\displaystyle 2\sqrt{x+2}+C

Explanation:

To evaluate the integral, we perform the following substitution:

\displaystyle u=(x+2)^{\frac{1}{2}}

\displaystyle du=\frac{1}{2}(x+2)^{-\frac{1}{2}}dx

The derivative was found using the following rule:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}

Now, we rewrite the integrand and integrate:

\displaystyle 2\int du=2u+C

The integral was performed using the following rule:

\displaystyle \int dx=x+C

Finally, replace u with our original x term:

\displaystyle 2\sqrt{x+2}+C

Example Question #1022 : Integrals

The Laplace Transform is an integral transform that converts functions from the time domain \displaystyle t to the complex frequency domain \displaystyle s. The transformation of a function \displaystyle f(t) into its complex frequency function  \displaystyle F(s) is given by:

\displaystyle F(s)= \int_{0}^{\infty}e^{-st}*f(t) dt

Where \displaystyle s=a+bi, where \displaystyle a and \displaystyle b are constants and \displaystyle i is the imaginary number. 

Evaluate the Laplace Transform of the function \displaystyle f(t) at time \displaystyle t-a. Suppose that \displaystyle f(t)=0 when \displaystyle t \leq a

Possible Answers:

\displaystyle saF(s)

\displaystyle F(s-a)

\displaystyle e^{-sa}F(s)

\displaystyle e^{sa}F(s)

Correct answer:

\displaystyle e^{-sa}F(s)

Explanation:

The Laplace Transform will be given by:

\displaystyle \int_{0}^{\infty}e^{-s(t-a)}*f(t-a) dt

Since \displaystyle f(t-a)=0 when \displaystyle t \leq a, we can change the integral to:

 

\displaystyle \int_{a}^{\infty}e^{-st}*f(t-a) dt

This is because when you change the lower bound of the integral, the exponent will only exist for values for which \displaystyle f is defined. 

Let \displaystyle U=t-a

\displaystyle t=U+a

\displaystyle \frac{dU}{dt}=1

This changes our integral to:

\displaystyle \int_{a}^{\infty}e^{-s(U+a)}*f(U) dU

We can now move the \displaystyle e^{-sa} term out of the integral, which will give us:

\displaystyle e^{-sa}\int_{a}^{\infty}e^{-sU}*f(U) dU=e^{-sa} F(s)

Example Question #1021 : Integrals

Evaluate the following integral using substitution:

\displaystyle \int\frac{18x^2}{(3x^3+7)^2}dx

Possible Answers:

\displaystyle \frac{4}{9(3x^3+7)^3}+C

\displaystyle -\frac{4}{(3x^3+7)^3}+C

\displaystyle -\frac{2}{3x^3+7}+C

\displaystyle -\frac{4}{9(3x^3+7)^3}+C

\displaystyle -\frac{1}{9(3x^3+7)}+C

Correct answer:

\displaystyle -\frac{2}{3x^3+7}+C

Explanation:

To evaluate this integral, we first make the following substitution:

\displaystyle u=3x^3+7

Differentiating this expression, we get:

\displaystyle du=9x^2 dx\rightarrow x^2dx=\frac{1}{9}du

Now, we can rewrite the original integral with our substitution and solve:

\displaystyle \int\frac{18x^2}{(3x^3+7)^2}dx=\int\frac{18}{u^2}\frac{du}{9}=\int2u^{-2}du=-2u^{-1}+C

Finally, we have to replace with our earlier definition:

\displaystyle -2u^{-1}+C=-\frac{2}{3x+7}+C

Example Question #1024 : Integrals

In exponentially decaying systems, often times the solutions to differential equations take on the form of an integral called Duhamel's Integral. This is given by:

\displaystyle g(t)=\int_{0}^{t}e^{-s(t-b)}*f(b) db

Where \displaystyle s is a constant and \displaystyle f(b) is a function that represents an external force. 

Suppose I introduce growth factors that effect my population at a rate of 

\displaystyle f(b)=e^{kb}. At what rate \displaystyle k do I need in order for my population to grow? (Hint: Find \displaystyle g and determine for what \displaystyle k will \displaystyle g increase in time.)

Possible Answers:

\displaystyle k\geq -s

\displaystyle k>0

\displaystyle k > s

\displaystyle s>k

Correct answer:

\displaystyle k>0

Explanation:

Start by substituting \displaystyle f(b)=e^{kb} into the integral to get:

\displaystyle g(t)=\int_{0}^{t}e^{-s(t-b)}*e^{kb} db

We can combine this into one large term:

\displaystyle g(t)=\int_{0}^{t}e^{-s(t-b)+kb} db

\displaystyle u=-st+sb+kb

\displaystyle \frac{du}{db}=s+k

\displaystyle db=\frac{u}{s+k}

\displaystyle g(t)=\frac{1}{s+k}\int_{0}^{t}e^{u} du

Since \displaystyle \int e^u=e^u.

\displaystyle g(t)=\frac{1}{s+k}[e^u]_{0}^{t}=\frac{1}{s+k}[e^{-st+sb+kb}]_{0}^{t}= \frac{1}{s+k}[e^{kt}-e^{-st}]

This can only grow when: 

\displaystyle k > 0 

Example Question #671 : Finding Integrals

Evaluate the integral with a substitution, 

 

\displaystyle \small \small \int\frac{ \sin(\ln x)}{x} dx

 

Possible Answers:

\displaystyle \small \small \small \cos(\ln x)+\frac{1}{x}+C

\displaystyle \small -\sin(\ln x)+\cos(\ln x)+C

\displaystyle \small \small - \cos(\ln x) + C

\displaystyle \small \frac{\ln x}{x}+\sin(\ln x)

\displaystyle \small \small -\sin(\ln x) + C

Correct answer:

\displaystyle \small \small - \cos(\ln x) + C

Explanation:

\displaystyle \small \small \int\frac{ \sin(\ln x)}{x} dx

Let

\displaystyle \small u = ln(x)

 

\displaystyle \small du =\frac{1}{x}dx

 

\displaystyle \small \small \small \small \int\frac{ \sin(\ln x)}{x} dx=\int\sin(u)du=-\cos(u)

We can now convert this back to a function of \displaystyle \small x by substituting \displaystyle \small u = \ln x

\displaystyle \small -\cos(u)=-\cos(\ln x)

 

\displaystyle \small \small \small \small \small \int\frac{ \sin(\ln x)}{x} dx = - \cos(\ln x)

 

Example Question #91 : Solving Integrals By Substitution

Calculate the following integral: \displaystyle \int \frac{x}{x+2}dx

Possible Answers:

\displaystyle x+2-ln\left |x+2 \right |+C

\displaystyle 2x-2ln\left |x+2 \right |+C

\displaystyle x+2-\frac{1}{2}ln\left |x+2 \right |+C

\displaystyle x-2ln\left |x+2 \right |+C

Correct answer:

\displaystyle x-2ln\left |x+2 \right |+C

Explanation:

\displaystyle \int \frac{x}{x+2}dx

Add 2 and subtract 2 from the numerator of the integrand:\displaystyle \int \frac{x}{x+2}dx=\int \frac{x+2-2}{x+2}dx.

Simplify and apply the difference rule:\displaystyle \int \frac{x+2-2}{x+2}dx=\int (\frac{x+2}{x+2}-\frac{x}{x+2})dx=\int dx-\int \frac{2}{x+2}dx

Solve the first integral: \displaystyle \int dx=x+C.

Make the following substitution to solve the second integral: \displaystyle u=x+2 \displaystyle du=dx

Apply the substitution to the integral: \displaystyle \int \frac{2}{x+2}dx=2\int\frac{du}{u}

Solve the integral:\displaystyle 2\int\frac{du}{u}=2ln\left | x+2\right |+C

Combine the answers to the two integrals: \displaystyle \int dx-\int \frac{2}{x+2}dx=x-2ln\left | x+2\right |+C.

Solution: \displaystyle \int \frac{x}{x+2}dx=x-2ln\left | x+2\right |+C

Example Question #672 : Finding Integrals

Evaluate the Integral:

\displaystyle \int \frac{sin(x)}{2+cos(x)}dx

Possible Answers:

\displaystyle ln(cos(x)+2)+c

\displaystyle ln(cos(x)-2)+c

\displaystyle ln(cos(x))+2+c

\displaystyle -ln(cos(x)-2)+c

\displaystyle -ln(2+cos(x))+c

Correct answer:

\displaystyle -ln(2+cos(x))+c

Explanation:

We use substitution to solve the problem:

Let  \displaystyle u=2+cos(x)  and  \displaystyle du=-sin(x)dx  \displaystyle \Rightarrow sinxdx=-du

Therefore:

\displaystyle \int \frac{sin(x)}{2+cos(x)}dx=-\int \frac{1}{u}du=-ln(u)+c=-ln(2+cos(x))+c

Example Question #2771 : Calculus Ii

Evaluate

\displaystyle \int cos(x)e^{sin(x)}dx

Possible Answers:

\displaystyle tan(x)+e^x +c

\displaystyle e^{sinx} +cos(x) +c

\displaystyle e^{cosx}+c

\displaystyle e^{sinx}+c

\displaystyle e^{cosx}-sin(x)+c

Correct answer:

\displaystyle e^{sinx}+c

Explanation:

Here we use substitution to solve for the integrand.  Let u=sin(x) therefore du= cos(x)dx.  Plug your values back in:

\displaystyle \int cos(x)e^{sinx}dx = \int e^udu = e^u +c =e^{sinx}+c

Example Question #92 : Solving Integrals By Substitution

\displaystyle \int_{1}^{2}\frac{x}{x^2+1}dx

Possible Answers:

\displaystyle 0.3266

\displaystyle 0.2466

\displaystyle 0.3496

\displaystyle 0.4581

\displaystyle 1.3466

Correct answer:

\displaystyle 0.4581

Explanation:

To integrate this expression, you have to use u substitution. First, assign your u expression:

\displaystyle u=x^2+1

\displaystyle du=2xdx

\displaystyle \frac{1}{2}du=xdx

Now, plug everything back in so you can integrate:

\displaystyle \frac{1}{2}\int_{1}^{2}\frac{1}{u}du

Now integrate:

\displaystyle \frac{1}{2}\ln\left | u \right |

From here substitute the original variable back into the expression.

\displaystyle \frac{1}{2}\ln|x^2+1|

Evaluate at 2 and then 1.

Subtract the results:

\displaystyle \frac{1}{2}\left(\ln|2^2+1|-\ln|1+1| \right )

\displaystyle \frac{1}{2}\left(\ln|5|-\ln|2|\right)

\displaystyle \frac{\ln5-\ln2}{2}=0.4581

 

Example Question #1022 : Integrals

Calculate the following integral: 

\displaystyle y=\int \sqrt{4-4x^{2}}dx

Possible Answers:

\displaystyle y=sin^{-1}x-sin(2sin^{-1}x)+C

\displaystyle y=sin^{-1}x+x\sqrt{1-x^2}+C

\displaystyle y=2sin^{-1}x-sin(2sin^{-1}x)+C

\displaystyle y=2sin^{-1}x-\frac{1}{2}sin(2sin^{-1}x)+C

Correct answer:

\displaystyle y=sin^{-1}x+x\sqrt{1-x^2}+C

Explanation:

\displaystyle y=\int \sqrt{4-4x^{2}}dx

Factor out \displaystyle \sqrt{4} from the integrand, and simplify: 

\displaystyle y=\int \sqrt{4}\sqrt{1-x^{2}}dx=\int 2\sqrt{1-x^{2}}dx=2\int \sqrt{1-x^{2}}dx

Make the following substitution: \displaystyle x=sin\theta \displaystyle dx=cos\theta d\theta

Plug the substitution into the integrand: 

\displaystyle y=2\int \sqrt{1-sin^{2}\theta }cos\theta d\theta.

Use the Pythagorean identity to make the following substitution, and simplify: 

\displaystyle \\y=2\int \sqrt{1-sin^{2}\theta }cos\theta d\theta\\=2\int \sqrt{cos^{2}\theta }cos\theta d\theta\\=2\int cos\theta cos\theta d\theta\\= 2\int cos^{2}\theta d\theta

Apply the following identity to the integrand: 

\displaystyle cos^{2}\theta=\frac{1+cos(2 \theta )}{2}

\displaystyle y=2\int cos^{2}\theta=2\int \frac{1+cos(2) \theta }{2}d\theta.

Separate the integral into two separate integrals: 

\displaystyle y= 2\int \frac{1}{2}d\theta+2\int\frac{cos(2\theta )}{2}d\theta.

Solve the first integral: 

\displaystyle y=\theta+2\int\frac{cos(2\theta )}{2}d\theta.

Make the following substitution for the second integral: 

\displaystyle u=2\theta \displaystyle du=2d\theta \displaystyle \frac{1}{2}du=d\theta.

Apply the substitution, and solve the integral: 

\displaystyle 2\int \frac{cos(2\theta )}{2}=2\int \frac{cosu}{2}\frac{1}{2}du=\frac{1}{2}sinu=\frac{1}{2}sin(2\theta )+C.

Combine answers for both integrals: 

\displaystyle y=2\int cos^{2}\theta=\theta+\frac{1}{2}sin(2\theta )+C

Solve for \displaystyle \theta

\displaystyle x=sin\theta 

\displaystyle sin^{-1}x=\theta

Plug values for  \displaystyle \theta back into solution to integral: 

Recall that, 

\displaystyle sin(2\theta)=2sin(\theta)cos(\theta)

and from above,

\displaystyle \\x=sin(\theta) \\cos(\theta)=\sqrt{1-sin^2(\theta)}=\sqrt{1-x^2}

Therefore,

\displaystyle \\\theta+\frac{1}{2}sin(2\theta )+C \\=sin^{-1}+4sin(x)cos(x) \\=sin^{-1}(x)+x\sqrt{1-x^2}+C.

Learning Tools by Varsity Tutors