All Biochemistry Resources
Example Questions
Example Question #2 : Reactants And Products Of The Citric Acid Cycle
Which of the following molecules are initial reactants of the citric acid cycle?
Pyruvate
None of these are initial reactants of citric acid cycle
NADH
None of these are initial reactants of citric acid cycle
Citric acid cycle inputs are derived from glycolysis outputs. Glycolysis produces pyruvate molecules, , and ATP. The pyruvate molecules undergo reactions that convert the three carbon pyruvate to a two carbon acetyl CoA and an one carbon carbon dioxide. The acetyl-CoA molecules are then used as the initial inputs for the citric acid cycle, as they are combined with oxaloacetate. Note that pyruvate itself does not enter the citric acid cycle. and are electron carriers that are produced in the citric acid cycle and are used in electron transport chain to generate ATP.
Example Question #1 : Reactants And Products Of The Citric Acid Cycle
A glucose molecule entering the cell can indirectly produce __________ and __________ in the citric acid cycle.
three . . . one
two . . . six
one . . . three
six . . . two
six . . . two
A glucose (six carbons) molecule enters glycolysis and produces two three carbon molecules (pyruvate). Each pyruvate is broken down into a two carbon acetyl-CoA molecule that enters the citric acid cycle. Each acetyl-CoA molecule produces three and one in the citric acid cycle. This means that two acetyl-CoA (derived from one glucose molecule) produces six and two molecules in the citric acid cycle.
Example Question #4 : Reactants And Products Of The Citric Acid Cycle
Which of the following is true regarding the citric acid cycle?
Most of the intermediates of this cycle have four more carbons than acetyl-CoA
More than one of these are true
The citric acid cycle produces GTP
The citric acid cycle produces carbon dioxide
More than one of these are true
Citric acid cycle involves a series of reactions that are involved in the production of the necessary molecules for electron transport chain. The cycle starts with a two carbon molecule (acetyl-CoA) binding to a four carbon molecule (oxaloacetate). This creates a six carbon molecule (citrate) that can go through a series of reactions. Most of these reactions involve a six carbon molecule. As mentioned, acetyl-CoA has two carbons; therefore, most of the intermediates in this cycle have six carbons, or four more carbons than acetyl-CoA. One turn of citric acid cycle produces , , (carbon dioxide) and one GTP molecule(s).
Example Question #1 : Reactants And Products Of The Citric Acid Cycle
Which of the following molecules involved in the citric acid cycle initiates the cycle by combining with acetyl-CoA?
Malate
Citrate
Oxaloacetate
Fumarate
Succinate
Oxaloacetate
The first step in the citric acid cycle is for acetyl-CoA to react with oxaloacetate. This forms citrate, which then continues through the cycle, ultimately reforming the oxaloacetate molecule to redo the cycle.
Example Question #231 : Catabolic Pathways And Metabolism
The pyruvate dehydrogenase complex creates acetyl-CoA from pyruvate. What other molecule is a product of this reaction?
Pyruvate is converted to acetyl-CoA by the pyruvate dehydrogenase complex. Carbon dioxide is released during this reaction, and in addition to this, is reduced to .
Example Question #232 : Catabolic Pathways And Metabolism
In what part of the cell does the pyruvate dehydrogenase complex function?
In the nucleus
Cytoplasm
The mitochondrial matrix
The mitochondrial intermembrane
Within the inner membrane of the mitochondria
The mitochondrial matrix
The pyruvate dehydrogenase complex (PDC) is preparing pyruvate for the Krebs cycle by converting it to acetyl-CoA. Because the Krebs cycle functions within the mitochondrial matrix, the PDC is also taking place there. This ensures quick and easy movement from the PDC into the Krebs cycle.
Example Question #41 : Citric Acid Cycle
Which process involved in cellular respiration produces the largest quantity of high energy electron carriers?
Glycolysis
ATP synthase
Pyruvate dehydrogenase complex
Electron transport chain
Krebs cycle
Krebs cycle
The Krebs cycle produces the most high energy electron carriers of any process involved in cellular respiration. Per glucose molecule, the Krebs cycle produces and .
Example Question #42 : Citric Acid Cycle
Which of the following molecules enter the Krebs cycle directly, following glycolysis?
Pyruvate dehydrogenase
Acetyl-CoA
Pyruvate
Ubiquinone
Glucose
Acetyl-CoA
Ubiquinone is a part of the electron transport chain, and has little to do with the Krebs cycle. Glucose is broken down during glycolysis, and does not enter the Krebs cycle directly. Many students make the mistake of thinking that pyruvate enters the Krebs cycle, since it is produced in glycolysis, and the Krebs cycle follows glycolysis. However, pyruvate is first converted to acetyl-CoA by the pyruvate dehydrogenase complex in the mitochondrial matrix, and acetyl-CoA enters the Krebs cycle.
Example Question #15 : Reactants And Products Of The Citric Acid Cycle
What is the role of isocitrate dehydrogenase in the citric acid cycle of the mitochondria?
Isocitrate dehydrogenase converts citrate to alpha-ketoglutarate and is inhibited by
Isocitrate dehydrogenase converts alpha-ketoglutarate to isocitrate and is activated by
Isocitrate dehydrogenase converts isocitrate to alpha-ketoglutarate and is inhibited by
Isocitrate dehydrogenase converts citrate to isocitrate and is inhibited by
Isocitrate dehydrogenase converts citrate to isocitrate and is activated by
Isocitrate dehydrogenase converts isocitrate to alpha-ketoglutarate and is inhibited by
Isocitrate dehydrogenase activation leads to oxidative decarboxylation of isocitrate in a two step process producing alpha-ketoglutarate and . In the mitochondria, the reaction produces also a charged electron carrier molecule, , from . Isocitrate dehydrogenase, inhibited by and activated by , is a major regulator enzyme of the citric cycle.
Example Question #961 : Biochemistry
Which of the following steps within the citric acid cycle results in the production of a molecule of carbon dioxide ?
The conversion of malate to oxaloacetate
The conversion of succinyl-CoA to succinate
The conversion of isocitrate to alpha-ketoglutarate
The conversion of succinate to fumarate
The conversion of fumarate to malate
The conversion of isocitrate to alpha-ketoglutarate
The only step of the citric acid cycle listed that results in the production of as a side product is the conversion of isocitrate to alpha-ketoglutarate. In this step, the enzyme, isocitrate dehydrogenase catalyzes the conversion of isocitrate to alpha-ketoglutarate, while also converting to and as side products, and generating a molecule of in the process (i.e. reducing the carbon count from 5 in isocitrate to 4 in alpha-ketoglutarate).
The conversion of alpha-ketoglutarate to succinyl-CoA also produces a molecule of as a side product. However, this step is not listed as an answer choice.
None of the other answer choices listed produce as side products.
Certified Tutor