All Basic Geometry Resources
Example Questions
Example Question #1 : How To Find If Right Triangles Are Congruent
Complete the congruence statement
Since we know that , we know that is also a right angle and is thus congruent to .
We are given that . Furthermore, since and are vertical angles, they are also congruent.
Therefore, we have enough evidence to conclude congruence by Angle-Side-Angle. Vertex matches up with , vertex matches up with , and matches up to . Thus, our congruence statement should look the following
Example Question #4 : How To Find If Right Triangles Are Congruent
Figures and are triangles.
Are and congruent?
There is not enough information given to answer this question.
Yes.
No.
Yes.
We know that congruent triangles have equal corresponding angles and equal corresponding sides. We are given that the corresponding sides are equal and are in the ratio of . A triangle whose sides are in this ratio is a , where the shortest side lies opposite the angle, the longest side is the hypotenuse and lies opposite the right angle, and the third side lies opposite the angle. (Remember .) So we know the corresponding angles are equal. Therefore, the triangles are congruent.
Example Question #491 : Triangles
Figures and are triangles.
Are and congruent?
There is not enough information given to answer this question.
Yes.
No.
Yes.
We know that congruent triangles have equal corresponding angles and equal corresponding sides. We are given that the corresponding sides are equal and are in the ratio of .
Simplify the ratio by dividing by
Thus, the corresponding sides are in the ratio and we know both triangles are triangles. Since the corresponding angles and the corresponding sides are equal, the triangles are congruent.
Example Question #6 : How To Find If Right Triangles Are Congruent
Figures and are triangles.
Are and congruent?
Yes.
There is not enough information given to answer this question.
No.
Yes.
We know that congruent triangles have equal corresponding angles and equal corresponding sides. We are given that the corresponding sides are equal, and the measures of two angles. We know that and because the sum of the angles of a triangle must equal . So the corresponding angles are also equal. Therefore, the triangles are congruent.
Example Question #7 : How To Find If Right Triangles Are Congruent
Figures and are triangles.
Are and congruent?
Yes.
There is not enough information given to answer this question.
No.
Yes.
We know that congruent triangles have equal corresponding angles and equal corresponding sides. We are given that the corresponding sides are equal, and the measures of two angles. We know that and because the sum of the angles of a triangle must equal . So the corresponding angles are also equal. Therefore, the triangles are congruent.
Example Question #4 : How To Find If Right Triangles Are Congruent
Figures and are triangles.
Are and congruent?
Yes.
There is not enough information given to answer this question.
No.
Yes.
We know that congruent triangles have equal corresponding angles and equal corresponding sides. We are given that the corresponding sides are equal and are in the ratio of . A triangle whose sides are in this ratio is a , where the shorter sides lies opposite the angles, and the longer side is the hypotenuse and lies opposite the right angle. So we know the corresponding angles are equal. Therefore, the triangles are congruent.
Example Question #2 : How To Find If Right Triangles Are Congruent
Figures and are triangles.
Are and congruent?
Yes.
There is not enough information given to answer this question.
No.
Yes.
We know that congruent triangles have equal corresponding angles and equal corresponding sides. We are given that the corresponding sides are equal and are in the ratio of .
Simplify the ratio by dividing by
Thus, the corresponding sides are in the ratio and we know both triangles are triangles. Since the corresponding angles and the corresponding sides are equal, the triangles are congruent.
Example Question #1481 : Plane Geometry
Are these right triangles congruent?
Cannot be determined - we need at least one pair of angles, or all three sides
No - at least one pair of corresponding sides is not congruent
No - the angles are different
Yes - all three pairs of sides must be congruent by Pythagorean Theorem
Yes - by the angle-angle-side theorem
Yes - all three pairs of sides must be congruent by Pythagorean Theorem
Right now we can't directly compare these triangles because we do not know all three side lengths. However, we can use Pythagorean Theorem to determine both missing sides. The left triangle is missing the hypotenuse:
The right triangle is missing one of the legs:
subtract 2,304 from both sides
This means that the two triangles both have side lengths 48, 55, 73, so they must be congruent.
Example Question #1481 : Basic Geometry
The hypotenuse and acute angle are given for several triangles. Which if any are congruent? Triangle A- Hypotenuse=15; acute angle=56 degrees. Triangle B- Hypotenuse=18; acute angle=56 degrees. Triangle C-Hypotenuse=18; acute angle= 45 degrees.
A & C
All three.
B & C
None of these
A & B
None of these
The correct answer is none of these. There are several pairs of angles and sides or sides and angles that must be the same in order for two triangles to be congruent.
In our case, we need the acute angle and the hypotenuse to both be equal. No two triangles above have this relationship and therefore no two are congruent.
Example Question #1483 : Basic Geometry
Given: and .
and are both right angles.
True or false: From the above information, it follows that .
True
False
True
If we seek to prove that , then , , and correspond to , , and , respectively.
By the Hypotenuse-Leg Theorem (HL), if the hypotenuse and one leg of a triangle are congruent to those of another, the triangles are congruent.
and are both right angles, so and are both right triangles. and are congruent corresponding sides, and moreover, since, each includes the right-angle vertex as an endpoint, they are congruent corresponding legs. and are opposite the right angles, making them congruent corresponding hypotenuses.
The conditions of HL are satisfied, so .
Certified Tutor
Certified Tutor