AP Physics B : AP Physics B

Study concepts, example questions & explanations for AP Physics B

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Electricity And Magnetism

Which of the following changes to a copper wire will lead to the greatest decrease in voltage?

Possible Answers:

Increasing the length of the copper wire by a factor of two

Increasing the current through the copper wire by a factor of two

Increasing the cross-sectional area of the copper wire by a factor of two

Replacing the copper wire with a more conductive material

Correct answer:

Increasing the cross-sectional area of the copper wire by a factor of two

Explanation:

According to Ohm’s law a decrease in current and/or resistance will lead to a decrease in voltage, since voltage is directly proportional to both current and resistance.

Increasing the current will not decrease voltage. Remember that resistance is defined as:

In this formula, is the resistivity, is the length of the wire, and  is the cross-sectional area of the wire. Increasing length will lead to an increase in resistance and voltage; however, increasing the area will lead to a decrease in resistance and, subsequently, a decrease in voltage.

The only answer that will lead to a decrease in voltage is the choice to increase the cross-sectional area of the wire.

Replacing the copper wire with a more conductive material will increase the resistivity, which will subsequently increase resistance and voltage.

Example Question #2 : Electric Circuits

A student assembles a circuit made up of a voltage source and two resistors. All three circuit elements are connected in parallel. The voltage across the voltage source is  and the resistance of the resistors are and  respectively. Which of the following is true of this circuit?

Possible Answers:

The current through the  resistor will equal the current through the resistor

The voltage across the  resistor will equal the voltage across the resistor

The voltage across the  resistor will be less than the voltage across the resistor

The current through the  resistor will be less than the current through the resistor

Correct answer:

The voltage across the  resistor will equal the voltage across the resistor

Explanation:

When circuit elements, such as resistors, are connected in parallel they will have the same voltage drop. The current through the resistor will be greater than current through the resistor, but their voltages will be equal. According to Ohm’s law the current flowing through the smaller resistor will be larger. Ohm’s law can be rearranged to solve for current as follows:

Since voltage is the same across resistors, the lower resistance () will have more current flowing through it since current is inversely proportional to resistance.

Example Question #31 : Ap Physics 1

The moon's distance from the center of the Earth was decreased by a multiple of three. How would this affect the gravitational force of the Earth on the moon? 

Possible Answers:

The gravitational force would not be affected, because the moon's mass is the same

It would increase by a factor of three

It would increase by a factor of nine

It would decrease by a factor of nine

Correct answer:

It would increase by a factor of nine

Explanation:

The law of gravitation is written as , with G being equal to .

Since the radius of the two masses acting on each other is squared, and is found in the denominator, a decrease in the radius by a multiple of three will cause a nine-fold increase in the gravitational force.

Example Question #2 : Newton's Second Law

What is the acceleration due to gravity on a planet on which an object with a mass of 20.0kg has a weight of 270N?

Possible Answers:

0.074m/s2

13.5m/s2

10m/s 2

27m/s2

Correct answer:

13.5m/s2

Explanation:

Solve the following equation for acceleration, using the values given in the question.





Example Question #2 : Motion In One Dimension

Cliff_horizontal

A ball is thrown horizontally off a cliff of height of with an initial velocity of . How far from the cliff will the ball land?

Possible Answers:

Correct answer:

Explanation:

First we will find the time required for the ball to reach the ground. Since the ball is thrown horizontally, it has no initial vertical component. We use the following equation to solve for the total flight time:

We are given the change in height, initial velocity, and acceleration. Using these values, we can solve for the time. Note that the change in height will be negative, since the ball is traveling downward.

Finally, we use the horizontal velocity to find the distance traveled in . Remember that the horizontal velocity remains constant during projectile motion.

Example Question #91 : Ap Physics B

A certain planet has three times the radius of Earth and nine times the mass. How does the acceleration of gravity at the surface of this planet (ag) compare to the acceleration at the surface of Earth (g)?

Possible Answers:

Correct answer:

Explanation:

The acceleration of gravity is given by the equation a_{g} = \frac{GM}{r^{2}}, where G is constant.

For Earth, a_{g} = \frac{GM_{earth}}{r_{earth}^{2}} = g.

For the new planet, 

.

So, the acceleration is the same in both cases.

 

Learning Tools by Varsity Tutors