AP Calculus AB : Asymptotic and Unbounded Behavior

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Finding Definite Integrals

\displaystyle \int_{\pi}^{2\pi}\sin(2x){\mathrm{d} x}=?

Possible Answers:

\displaystyle 2

\displaystyle 0

\displaystyle \pi

\displaystyle 1

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle 0

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

Since our \displaystyle f(x)=\sin(2x), we can't use the power rule. Instead we end up with: 

\displaystyle \int f(x){\mathrm{d} x}=\int \sin(2x){\mathrm{d} x}=\frac{-\cos(2x)}{2}+c

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(\frac{-\cos(2b)}{2}+c)-(\frac{-\cos(2a)}{2}+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{\pi}^{2\pi}f(x){\mathrm{d} x}=(\frac{-\cos(4\pi)}{2})-(\frac{-\cos(2\pi)}{2})

\displaystyle \int_{\pi}^{2\pi}f(x){\mathrm{d} x}=(\frac{-1}{2})-(\frac{-1}{2})

\displaystyle \int_{\pi}^{2\pi}f(x){\mathrm{d} x}=0

Example Question #61 : Asymptotic And Unbounded Behavior

\displaystyle \int \frac{3}{x}=

Possible Answers:

\displaystyle 3x^{-2}+C

\displaystyle 3x^{-1}+C

\displaystyle -3x^{-2}+C

\displaystyle -3e^{-x}

\displaystyle 3\ln \left | x \right |+C

Correct answer:

\displaystyle 3\ln \left | x \right |+C

Explanation:

The integral of \displaystyle \frac{1}{x} is \displaystyle \ln \left | x \right |+C.  The constant 3 is simply multiplied by the integral.  

Example Question #64 : Functions, Graphs, And Limits

\displaystyle \int cos(x)\sin(x){\mathrm{d} x}=?

Possible Answers:

\displaystyle \sin(x)\cos(x)+c

\displaystyle -(\frac{1}{2}\cos^2(x)+c)

\displaystyle \frac{\cos(x)}{\sin(x)}+c

\displaystyle \cos^2(x)sin^2(x)+c

\displaystyle \frac{\sin(x)}{\cos(x)}+c

Correct answer:

\displaystyle -(\frac{1}{2}\cos^2(x)+c)

Explanation:

To integrate \displaystyle \cos(x)\sin(x), we need to get the two equations in terms of each other. We are going to use "u-substitution" to create a new variable, \displaystyle u, which will equal \displaystyle \cos(x).

Now, if \displaystyle u=\cos(x), then 

\displaystyle \frac{\mathrm{d}u }{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}\cos(x)=-sin(x) 

Multiply both sides by \displaystyle \mathrm d {x} to get the more familiar: 

\displaystyle {\mathrm{d} u}=-\sin(x)\mathrm{d}x

Note that our \displaystyle \mathrm d{u}=-\sin(x), and our original equation was asking for a positive \displaystyle \sin(x).

That means if we want \displaystyle \int\cos(x)\sin(x) in terms of \displaystyle u, it looks like this:

Bring the negative sign to the outside:

\displaystyle -\int u\mathrm d{u}.

We can use the power rule to find the integral of \displaystyle u:

\displaystyle -(\frac{1}{2}u^2+c)

Since we said that \displaystyle u=\cos(x), we can plug that back into the equation to get our answer:

\displaystyle -(\frac{1}{2}\cos^2(x)+c)

Example Question #3 : Finding Indefinite Integrals

Evaluate the integral below:

 

\displaystyle f(x)=\int \frac{dx}{x^2-16}

Possible Answers:

1

\displaystyle \frac{1}{4} ln\left | \frac{x+2}{x-2} \right |+c

\displaystyle \frac{1}{4} ln\left | \frac{x-2}{x+2} \right |+c

\displaystyle \frac{1}{8} ln\left | \frac{x-4}{x+4} \right |+c

\displaystyle \frac{1}{8} ln\left | \frac{x+4}{x-4} \right |+c

Correct answer:

\displaystyle \frac{1}{8} ln\left | \frac{x-4}{x+4} \right |+c

Explanation:

In this case we have a rational function as \displaystyle \frac{N(x)}{D(x)}, where

\displaystyle N(x)=1

and

 \displaystyle D(x)=\frac{1}{x^2-16}

\displaystyle D(x) can be written as a product of linear factors:

 

\displaystyle \frac{1}{x^2-16}=\frac{1}{(x-4)(x+4)}\equiv \frac{A}{x-4}+\frac{B}{x+4}

 

It is assumed that A and B are certain constants to be evaluated. Denominators can be cleared by multiplying both sides by (x - 4)(x + 4). So we get:

 

\displaystyle 1=A(x+4)+B(x-4)

First we substitute x = -4 into the produced equation:

\displaystyle 1=-8B\Rightarrow B=-\frac{1}{8}

Then we substitute x = 4 into the equation:

\displaystyle 1=8A\Rightarrow A=\frac{1}{8}

Thus:

\displaystyle \frac{1}{(x-4)(x+4)}=\frac{1}{8}\frac{1}{x-4}-\frac{1}{8}\frac{1}{x+4}

 

Hence:

\displaystyle \int \frac{dx}{x^2-16}=\int(\frac{1}{8}\frac{1}{x-4}-\frac{1}{8}\frac{1}{x+4})dx

\displaystyle =\frac{1}{8}ln\left | x-4 \right |-\frac{1}{8}ln\left |x+4 \right |+c

\displaystyle =\frac{1}{8}(ln\left | x-4 \right |-ln\left |x+4 \right |)+c

\displaystyle =\frac{1}{8}ln\left | \frac{x-4}{x+4}\right |+c

 

 

Example Question #65 : Functions, Graphs, And Limits

Determine the indefinite integral:

Possible Answers:

\displaystyle \frac{ 2 \log_{10} x} {3 } + C

\displaystyle \frac{ 2 \sqrt{ \log_{10} x} } {3 } + C

\displaystyle \frac{ 2 \sqrt{ \log_{10} x} } {3 \ln x} + C

\displaystyle \frac{ 2 \sqrt{ \log_{10} x} \cdot \ln x} {3 } + C

\displaystyle \frac{ 2 \sqrt{ \log_{10} x} \cdot \log_{10} x} {3 } + C

Correct answer:

\displaystyle \frac{ 2 \sqrt{ \log_{10} x} \cdot \ln x} {3 } + C

Explanation:

\displaystyle \log_{10} x = \frac{\ln x}{\ln 10}, so this can be rewritten as 

 

Set \displaystyle u = \ln x. Then

\displaystyle \frac{\mathrm{d} u}{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x} \ln x = \frac{1}{x}

and 

\displaystyle du = \frac{dx}{x}

Substitute:

The outer factor can be absorbed into the constant, and we can substitute back:

\displaystyle = \frac{ 2 \sqrt{ \ln x} \cdot \ln x} {3 \cdot \sqrt{\ln 10}} + C

\displaystyle = \frac{ 2 \sqrt{ \log_{10} x} \cdot \ln x} {3 } + C

Example Question #71 : Functions, Graphs, And Limits

Evaluate:

Possible Answers:

\displaystyle \frac{2}{3}

\displaystyle \frac{2\sqrt{3}}{3}

\displaystyle 2 \ln 3

\displaystyle 2 \sqrt{\ln 3}

\displaystyle 2\sqrt{3}

Correct answer:

\displaystyle 2\sqrt{3}

Explanation:

Set \displaystyle u = \ln x. Then

\displaystyle \frac{\mathrm{d} u}{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x} \ln x = \frac{1}{x}

and 

\displaystyle du = \frac{dx}{x}

Also, since \displaystyle u = \ln x, the limits of integration change to \displaystyle \ln e^{3} = 3 and \displaystyle \ln 1= 0.

Substitute:

\displaystyle = \int_{0}^{3} u ^{\frac{1}{2}} \; du

 \displaystyle \begin{matrix} 3\\ \\ 0 \end{matrix}

 \displaystyle \begin{matrix} 3\\ \\ 0 \end{matrix}

\displaystyle =\frac{ 2\cdot 3\cdot \sqrt{3}} {3} - \frac{ 2\cdot 0\cdot \sqrt{0}} {3} =2\sqrt{3}

Example Question #4 : Finding Integrals

\displaystyle \int_{2}^{4}x^2{\mathrm{d} x}=?

Possible Answers:

\displaystyle 18\frac{2}{3}

Correct answer:

\displaystyle 18\frac{2}{3}

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

Since our \displaystyle f(x)=x^2, we can use the reverse power rule to find the indefinite integral or anti-derivative of our function:

\displaystyle \int (x^2){\mathrm{d} x}=\frac{1}{3}x^3+c

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(\frac{1}{3}b^3+c)-(\frac{1}{3}a^3+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{2}^{4}f(x){\mathrm{d} x}=(\frac{1}{3}\cdot 4^3)-(\frac{1}{3}\cdot 8^3)

\displaystyle \int_{2}^{4}f(x){\mathrm{d} x}=(\frac{64}{3})-(\frac{8}{3})

\displaystyle \int_{2}^{4}f(x){\mathrm{d} x}=\frac{56}{3}=18\frac{2}{3}

Example Question #1 : Finding Definite Integrals

\displaystyle \int_{1}^{2}\frac{1}{x}{\mathrm{d} x}=?

Possible Answers:

\displaystyle 0.81

\displaystyle 0.75

\displaystyle 0.30

\displaystyle 0.69

\displaystyle 1.2

Correct answer:

\displaystyle 0.69

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

As it turns out, since our \displaystyle f(x)=\frac{1}{x}, the power rule really doesn't help us. \displaystyle \frac{1}{x} has a special anti derivative: \displaystyle \ln{x}.

\displaystyle \int \frac{1}{x}{\mathrm{d} x}=\ln{x}+c

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(\ln{b}+c)-(\ln{a}+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{1}^{2}f(x){\mathrm{d} x}=(\ln(2))-(\ln(1))

\displaystyle \int_{1}^{2}f(x){\mathrm{d} x}=(\ln(2))-(0)

\displaystyle \int_{1}^{2}f(x){\mathrm{d} x}\approx 0.69

Example Question #5 : Finding Definite Integrals

\displaystyle \int_{3}^{40}e^x{\mathrm{d} x}=?

Possible Answers:

\displaystyle 2.35\cdot 10^{19}

\displaystyle 2.35\cdot 10^{9}

\displaystyle 1.05\cdot 10^{17}

\displaystyle 2.35\cdot 10^{15}

\displaystyle 2.35\cdot 10^{17}

Correct answer:

\displaystyle 2.35\cdot 10^{17}

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

As it turns out, since our \displaystyle f(x)=e^x, the power rule really doesn't help us. \displaystyle e^x is the only function that is it's OWN anti-derivative. That means we're still going to be working with \displaystyle e^x.

\displaystyle \int e^x{\mathrm{d} x}=e^x+c

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(e^b+c)-(e^a+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{3}^{40}f(x){\mathrm{d} x}=(e^{40})-(e^3)

\displaystyle \int_{3}^{40}f(x){\mathrm{d} x}=(2.35\cdot 10^{17})-(20.09)

Because \displaystyle e^3 is so small in comparison to the value we got for \displaystyle e^{40}, our answer will end up being \displaystyle 2.35\cdot 10^{17}

Example Question #4 : Finding Indefinite Integrals

What is the indefinite integral of \displaystyle x^2+5x?

Possible Answers:

\displaystyle 3x+5

\displaystyle 2x+5

\displaystyle x^4+5x^2+c

\displaystyle \frac{1}{3}x^3+\frac{5}{2}x^2+c

\displaystyle 10x^2+c

Correct answer:

\displaystyle \frac{1}{3}x^3+\frac{5}{2}x^2+c

Explanation:

To solve for the indefinite integral, we can use the reverse power rule. We raise the power of the exponents by one and divide by that new exponent. For this problem, that would look like:

\displaystyle \int x^2+5x{\mathrm{d} x}=\frac{x^{2+1}}{2+1}+\frac{5x^{1+1}}{1+1}+c

Remember, when taking an integral, definite or indefinite, we always add \displaystyle +c, as there could be a constant involved.

\displaystyle \int x^2+5x{\mathrm{d} x}=\frac{x^{3}}{3}+\frac{5x^{2}}{2}+c

\displaystyle \int x^2+5x{\mathrm{d} x}=\frac{1}{3}x^3+\frac{5}{2}x^2+c

Learning Tools by Varsity Tutors