All AP Calculus AB Resources
Example Questions
Example Question #1 : Integrals
Remember the fundamental theorem of calculus!
Since our , we can't use the power rule. Instead we end up with:
Remember to include the for any anti-derivative or integral taken!
Now we can plug that equation into our FToC equation:
Notice that the c's cancel out. Plug in the given values for a and b and solve:
Example Question #1 : Finding Indefinite Integrals
The integral of is . The constant 3 is simply multiplied by the integral.
Example Question #2 : Finding Indefinite Integrals
To integrate , we need to get the two equations in terms of each other. We are going to use "u-substitution" to create a new variable, , which will equal .
Now, if , then
Multiply both sides by to get the more familiar:
Note that our , and our original equation was asking for a positive .
That means if we want in terms of , it looks like this:
Bring the negative sign to the outside:
.
We can use the power rule to find the integral of :
Since we said that , we can plug that back into the equation to get our answer:
Example Question #3 : Finding Indefinite Integrals
Evaluate the integral below:
1
In this case we have a rational function as , where
and
can be written as a product of linear factors:
It is assumed that A and B are certain constants to be evaluated. Denominators can be cleared by multiplying both sides by (x - 4)(x + 4). So we get:
First we substitute x = -4 into the produced equation:
Then we substitute x = 4 into the equation:
Thus:
Hence:
Example Question #1 : Finding Integrals By Substitution
Determine the indefinite integral:
, so this can be rewritten as
Set . Then
and
Substitute:
The outer factor can be absorbed into the constant, and we can substitute back:
Example Question #2 : Finding Integrals By Substitution
Evaluate:
Set . Then
and
Also, since , the limits of integration change to and .
Substitute:
Example Question #4 : Integrals
Remember the fundamental theorem of calculus!
Since our , we can use the reverse power rule to find the indefinite integral or anti-derivative of our function:
Remember to include the for any anti-derivative or integral taken!
Now we can plug that equation into our FToC equation:
Notice that the c's cancel out. Plug in the given values for a and b and solve:
Example Question #281 : Ap Calculus Ab
Remember the fundamental theorem of calculus!
As it turns out, since our , the power rule really doesn't help us. has a special anti derivative: .
Remember to include the for any anti-derivative or integral taken!
Now we can plug that equation into our FToC equation:
Notice that the c's cancel out. Plug in the given values for a and b and solve:
Example Question #282 : Ap Calculus Ab
Remember the fundamental theorem of calculus!
As it turns out, since our , the power rule really doesn't help us. is the only function that is it's OWN anti-derivative. That means we're still going to be working with .
Remember to include the for any anti-derivative or integral taken!
Now we can plug that equation into our FToC equation:
Notice that the c's cancel out. Plug in the given values for a and b and solve:
Because is so small in comparison to the value we got for , our answer will end up being
Example Question #4 : Finding Indefinite Integrals
What is the indefinite integral of ?
To solve for the indefinite integral, we can use the reverse power rule. We raise the power of the exponents by one and divide by that new exponent. For this problem, that would look like:
Remember, when taking an integral, definite or indefinite, we always add , as there could be a constant involved.
Certified Tutor