AP Calculus AB : Asymptotic and Unbounded Behavior

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #53 : Finding Integrals

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral, we can use the reverse power rule. We raise the exponent of the variable by one and divide by our new exponent.

Remember to include a  to cover any potential constant that might be in our new equation.

Example Question #54 : Finding Integrals

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

Just like with the derivatives, the indefinite integrals or anti-derivatives of trig functions must be memorized.

Example Question #21 : Integrals

Possible Answers:

Undefined

Correct answer:

Explanation:

Use the Fundamental Theorem of Calculus. If , then .

Therefore, we need to find the indefinite integral of our equation.

To find the indefinite integral, we can use the reverse power rule: we raise the exponent by one and then divide by our new exponent.

Remember when taking the indefinite integral to include a  to cover any potential constants.

Simplify.

Apply the FTOC:

Notice that the 's cancel out.

Plug in our given numbers and solve.

Example Question #22 : Integrals

Possible Answers:

Correct answer:

Explanation:

Use the Fundamental Theorem ofCcalculus. If , then .

Therefore, we need to find the indefinite integral of our equation.

To find the indefinite integral, we can use the reverse power rule: we raise the exponent by one and then divide by our new exponent.

We are going to treat  as  since anything to the zero power is one.

Remember when taking the indefinite integral to include a  to cover any potential constants.

Simplify.

Plug that into our Fundamental Theorem of Calculus:

Notice that the 's cancel out.

Plug in our given numbers and solve.

Example Question #23 : Integrals

Possible Answers:

Correct answer:

Explanation:

Use the Fundamental Theorem of Calculus. If , then .

Therefore we need to find the indefinite integral.

To find the indefinite integral, we use the reverse power rule. That means we raise the exponent on the variables by one and then divide by the new exponent.

Remember to include a  when computing integrals. This is a place holder for any constant that might be in the new expression.

Now plug that back into the FTOC:

Notice that the 's cancel out.

Plug in our given numbers.

Example Question #24 : Integrals

Possible Answers:

Correct answer:

Explanation:

Use the Fundamental Theorem of Calculus. If , then .

Therefore we need to find the indefinite integral.

To find the indefinite integral, we use the reverse power rule. That means we raise the exponent on the variables by one and then divide by the new exponent.

Remember to include a  when computing integrals. This is a place holder for any constant that might be in the new expression.

Plug that back into FTOC:

Notice that the 's cancel out.

Plug in our given numbers.

Example Question #71 : Calculus Ii — Integrals

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral of our given equation, we can use the reverse power rule: we raise the exponent by one and then divide by that new exponent.

Don't forget to include a to compensate for any constant!

Example Question #104 : Asymptotic And Unbounded Behavior

What is the indefinite integral of  with respect to ?

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral, we're going to use the reverse power rule: raise the exponent of the variable by one and then divide by that new exponent.

Be sure to include  to compensate for any constant!

Example Question #83 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Possible Answers:

Correct answer:

Explanation:

The Fundamental Theorem of Calculus states that if , then . Therefore, we need to find the indefinite integral of our given equation.

To find the indefinite integral, we can use the reverse power rule. Raise the exponent of the variable by one and then divide by that new exponent.

We're going to treat  as .

Remember to include the  when taking the integral to compensate for any constant.

Simplify.

Plug that into FTOC:

Notice that the 's cancel out.

Plug in our given numbers.

 

Example Question #84 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Possible Answers:

Correct answer:

Explanation:

To find the definite integral, we can use the Fundamental Theorem of Calculus that states that if , then .

Therefore, we need to find the indefinite integral of our equation to start.

To find the indefinite integral, we can use the reverse power rule. We raise the exponent of the variable by one and divide by our new exponent. For this problem that would look like this:

Remember to include a  to cover any potential constant that might be in our new equation.

Plug that into FTOC:

Notice that the 's cancel out.

Plug in our given values.

Learning Tools by Varsity Tutors