Algebra II : Simplifying Exponents

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : Distributing Exponents (Power Rule)

Simplify:

Possible Answers:

Correct answer:

Explanation:

Step 1: Distribute the exponents in the numberator.

Step 2: Represent the negative exponents in the demoninator.

Step 3: Simplify by combining terms.

Example Question #1 : Integer Exponents

Simplify:

Possible Answers:

Correct answer:

Explanation:

Use the power rule to distribute the exponent:

Example Question #6 : Distributing Exponents (Power Rule)

Simplify:

Possible Answers:

Correct answer:

Explanation:

Step 1: Distribute the exponent through the terms in parentheses:

Step 2: Use the division of exponents rule.  Subtract the exponents in the numerator from the exponents in the denominator:

Example Question #1 : Distributing Exponents (Power Rule)

Simplify.

Possible Answers:

Correct answer:

Explanation:

When a power applies to an exponent, it acts as a multiplier, so 2a becomes 4a and -b becomes -2b. The negative exponent is moved to the denominator.

Example Question #1 : Distributing Exponents (Power Rule)

Simplify .

Possible Answers:

Correct answer:

Explanation:

When faced with a problem that has an exponent raised to another exponent, the powers are multiplied:  then simplify: .

Example Question #1 : Distributing Exponents (Power Rule)

Solve:  

Possible Answers:

Correct answer:

Explanation:

Solve each term separately.  A number to the zeroth power is equal to 1, but be careful to apply the signs after the terms have been simplified.

Example Question #1 : Distributing Exponents (Power Rule)

Simplify this expression: 

Possible Answers:

Correct answer:

Explanation:

 is the correct answer because the order of operations were followed and the multiplication and power rules of exponents were obeyed. These rules are as follows: PEMDAS (parentheses,exponents, multiplication, division, addition, subtraction), for multiplication of exponents follow the format , and .

First we simplify terms within the parenthesis because of the order of operations and the multiplication rule of exponents:

 

Next we use the power rule to distribute the outer power:

=

**note that in the first step it isn't necessary to combine the two x powers because the individuals terms will still add to x^16 at the end if you use the power rule correctly. However, following the order of operations is a great way to avoid simple math errors and is relevant in many problems.

 

Example Question #11 : Distributing Exponents (Power Rule)

Simplify the expression:

Possible Answers:

Correct answer:

Explanation:

We begin by distributing the power to all terms within the parentheses. Remember that when we raise a power to a power, we multiply each exponent:

Anytime we have negative exponents, we can convert them to positive exponents. However, if the exponent was negative in the numerator, the term shifts to the denominator. If the exponent was negative in the denominator, the term shifts to the numerator. 

Example Question #11 : Distributing Exponents (Power Rule)

Simplify:  

Possible Answers:

Correct answer:

Explanation:

To simplify this, we will need to use the power rule and order of operations.

Evaluate the first term.  This will be done in two ways to show that the power rule will work for exponents outside of the parenthesis for a single term.

For the second term, we cannot distribute  and  with the exponent  outside the parentheses because it's not a single term.  Instead, we must evaluate the terms inside the parentheses first.

 Evaluate the second term.

Square the value inside the parentheses.

Subtract the value of the second term with the first term.

Example Question #12 : Distributing Exponents (Power Rule)

Solve:  

Possible Answers:

Correct answer:

Explanation:

First convert  into a known base.  The number  can be rewritten as .

Rewrite the expression.

Use the power rule to multiply the exponents.

Use order of operations to evaluate the expression.

Learning Tools by Varsity Tutors