Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Transformations Of Polynomial Functions

Define  and .

Find .

Possible Answers:

Correct answer:

Explanation:

By definition, , so

Example Question #3 : Transformations Of Polynomial Functions

Write the transformation of the given function moved five units to the left:

Possible Answers:

Correct answer:

Explanation:

To transform the function horizontally, we must make an addition or subtraction to the input, x. Because we are asked to move the function to the left, we must add the number of units we are moving. This is the opposite of what one would expect, but if we are inputting values that are to the left of the original, they are less than what would have originally been. So, to counterbalance this, we add the units of the transformation.

For our function being transformed five units to the left, we get

 

Example Question #1131 : Algebra Ii

Write the transformation of the given function flipped, and moved one unit to the left:

Possible Answers:

Correct answer:

Explanation:

To transform a function horizontally, we must add or subtract the units we transform to x directly. To move left, we add units to x, which is opposite what one thinks should happen, but keep in mind that to move left is to be more negative. To flip a function, the entire function changes in sign.

After making both of these changes, we get

Example Question #6 : Transformations Of Polynomial Functions

Transform the function by moving it two units up, and five units to the left:

Possible Answers:

Correct answer:

Explanation:

To transform a function we use the following formula,

where h represents the horizontal shift and v represents the vertical shift.

In this particular case we want to shift to the left five units,

and vertically up two units,

.

Therefore, the transformed function becomes,

.

Example Question #7 : Transformations Of Polynomial Functions

Shift   up one unit.  What is the new equation?

Possible Answers:

Correct answer:

Explanation:

Expand the binomial.

Multiply negative by this quantity.

The polynomial in standard form is:  

Shifting this graph up one will change the y-intercept by adding one unit.

The answer is:  

Example Question #4 : Transformations Of Polynomial Functions

Shift the graph  up two units.  What's the new equation?

Possible Answers:

Correct answer:

Explanation:

Shifting this parabola up two units requires expanding the binomial.

Use the FOIL method to simplify this equation.

Shifting this graph up two units will add two to the y-intercept.

The answer is:  

Example Question #1 : Transformations Of Polynomial Functions

Shift  to up two units. What is the new equation?

Possible Answers:

Correct answer:

Explanation:

We will need to determine the equation of the parabola in standard form, which is:

Use the FOIL method to expand the binomials.

Shifting this up two units will add two to the value of .

The answer is:  

Example Question #1 : Transformations Of Polynomial Functions

If  and , what is ?

Possible Answers:

Correct answer:

Explanation:

In this problem, the  in the  equation becomes  --> .

This simplifies to , or

Example Question #1131 : Algebra Ii

Which of the following shows the polynomial in simplest form?

Possible Answers:

The polynomial is already in simplest form.

Correct answer:

Explanation:

To simplify a polynomial, we have to do two things: 1) combine like terms, and 2) rearrange the terms so that they're written in descending order of exponent.

First, we combine like terms, which requires us to identify the terms that can be added or subtracted from each other. Like terms always have the same variable (with the same exponent) attached to them. For example, you can add 1 "x-squared" to 2 "x-squareds" and get 3 "x-squareds", but 1 "x-squared" plus an "x" can't be combined because they're not like terms.

Let's identify some like terms below.

Here you can see that -4x and 9x are like terms. When we combine (add) -4x and 9x, we get 5x. So let's write 5x instead:

Let's do the same thing with the x-squared terms:

Now there are no like terms left. Our last step is to organize the terms so that x is written in descending power:

Example Question #1 : Polynomials

Simplify the following expression.

Possible Answers:

Correct answer:

Explanation:

This is not a FOIL problem, as we are adding rather than multiplying the terms in parenteses.

Add like terms to solve.

Combining these terms into an expression gives us our answer.

Learning Tools by Varsity Tutors