Algebra 1 : Systems of Equations

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #151 : Systems Of Equations

Solve the system for  and .

Possible Answers:

Correct answer:

Explanation:

The most simple method for solving systems of equations is to transform one of the equations so it allows for the canceling out of a variable. In this case, we can multiply  by  to get .

 Then, we can add to this equation to yield , so .

We can plug that value into either of the original equations; for example, .

So,  as well.

Example Question #1 : How To Find The Solution For A System Of Equations

What is the solution to the following system of equations:

Possible Answers:

Correct answer:

Explanation:

By solving one equation for , and replacing  in the other equation with that expression, you generate an equation of only 1 variable which can be readily solved.

Example Question #152 : Systems Of Equations

Solve this system of equations for :

 

Possible Answers:

None of the other choices are correct.

Correct answer:

Explanation:

Multiply the bottom equation by 5, then add to the top equation:

 

Example Question #2 : How To Find The Solution For A System Of Equations

Solve this system of equations for :

Possible Answers:

None of the other choices are correct.

Correct answer:

Explanation:

Multiply the top equation by :

Now add:

   

Example Question #3 : How To Find The Solution For A System Of Equations

Solve this system of equations for :

Possible Answers:

None of the other choices are correct.

Correct answer:

Explanation:

Multiply the top equation by :

Now add:

   

          

Example Question #1 : Solve Systems Of Two Linear Equations: Ccss.Math.Content.8.Ee.C.8b

Find the solution to the following system of equations.

Possible Answers:

Correct answer:

Explanation:

To solve this system of equations, use substitution. First, convert the second equation to isolate .

Then, substitute  into the first equation for .

Combine terms and solve for .

Now that we know the value of , we can solve for using our previous substitution equation.

Example Question #165 : Expressions & Equations

Find a solution for the following system of equations:

Possible Answers:

infinitely many solutions

no solution

Correct answer:

no solution

Explanation:

When we add the two equations, the  and  variables cancel leaving us with:

   which means there is no solution for this system.

Example Question #1 : How To Find The Solution For A System Of Equations

Solve for :

Possible Answers:

None of the other answers

Correct answer:

Explanation:

First, combine like terms to get . Then, subtract 12 and from both sides to separate the integers from the 's to get . Finally, divide both sides by 3 to get .

Example Question #1 : How To Find The Solution For A System Of Equations

We have two linear functions:

Find the coordinate at which they intersect.

Possible Answers:

none of these

Correct answer:

Explanation:

We are given the following system of equations:

We are to find  and . We can solve this through the substitution method.  First, substitute the second equation into the first equation to get

Solve for  by adding 4x to both sides

Add 5 to both sides

Divide by 7

So . Use this value to find  using one of the equations from our given system of equations.  I think I'll use the first equation (can also use the second equation).

So the two linear functions intersect at

Example Question #461 : New Sat

Teachers at an elementary school have devised a system where a student's good behavior earns him or her tokens. Examples of such behavior include sitting quietly in a seat and completing an assignment on time. Jim sits quietly in his seat 2 times and completes assignments 3 times, earning himself 27 tokens. Jessica sits quietly in her seat 9 times and completes 6 assignments, earning herself 69 tokens. How many tokens is each of these two behaviors worth?

Possible Answers:

Sitting quietly is worth 7 tokens and completing an assignment is worth 3.

Sitting quietly and completing an assignment are each worth 4 tokens.

Sitting quietly is worth 3 tokens and completing an assignment is worth 7.

Sitting quietly is worth 3 tokens and completing an assignment is worth 9.

Sitting quietly is worth 9 tokens and completing an assignment is worth 3.

Correct answer:

Sitting quietly is worth 3 tokens and completing an assignment is worth 7.

Explanation:

Since this is a long word problem, it might be easy to confuse the two behaviors and come up with the wrong answer. Let's avoid this problem by turning each behavior into a variable. If we call "sitting quietly"  and "completing assignments" , then we can easily construct a simple system of equations, 

 

and 

.

We can multiply the first equation by  to yield .

This allows us to cancel the  terms when we add the two equations together. We get , or .

A quick substitution tells us that . So, sitting quietly is worth 3 tokens and completing an assignment on time is worth 7.

Learning Tools by Varsity Tutors