All Algebra 1 Resources
Example Questions
Example Question #201 : Systems Of Equations
Solve the following system of equations:
infinitely many solutions
no solution
When we add the two equations, the variables cancel leaving us with:
Solving for we get:
We can then substitute our value for into one of the original equations and solve for :
Example Question #202 : Systems Of Equations
Solve the following system of equations.
We are given
We can solve this by using the substitution method. Notice that you can plug from the first equation into the second equation and then get
Add to both sides
Add 9 to both sides
Divide both sides by 5
So . We can use this value to find y by using either equation. In this case, I'll use .
So the solution is
Example Question #1 : Solve Problems Leading To Two Linear Equations: Ccss.Math.Content.8.Ee.C.8c
Adult tickets to the zoo sell for ; child tickets sell for . On a given day, the zoo sold tickets and raised in admissions. How many adult tickets were sold?
Let be the number of adult tickets sold. Then the number of child tickets sold is .
The amount of money raised from adult tickets is ; the amount of money raised from child tickets is . The sum of these money amounts is , so the amount of money raised can be defined by the following equation:
To find the number of adult tickets sold, solve for :
adult tickets were sold.
Example Question #2 : Translating Words To Linear Equations
Solve the following story problem:
Jack and Aaron go to the sporting goods store. Jack buys a glove for and wiffle bats for each. Jack has left over. Aaron spends all his money on hats for each and jerseys. Aaron started with more than Jack. How much does one jersey cost?
Let's call "" the cost of one jersey (this is the value we want to find)
Let's call the amount of money Jack starts with ""
Let's call the amount of money Aaron starts with ""
We know Jack buys a glove for and bats for each, and then has left over after. Thus:
simplifying, so Jack started with
We know Aaron buys hats for each and jerseys (unknown cost "") and spends all his money.
The last important piece of information from the problem is Aaron starts with dollars more than Jack. So:
From before we know:
Plugging in:
so Aaron started with
Finally we plug into our original equation for A and solve for x:
Thus one jersey costs
Example Question #202 : Systems Of Equations
Solve for only:
Use the elimination process to determine the value of .
Subtract the second equation with the first equation. This will eliminate the x-variable in order to find the y-variable.
The equation becomes:
Use this value and substitute into either the first or second equation and solve for the x-variable.
Let's select the first equation and solve for .
Add six on both sides.
The result will be the same if we substitute into the second equation.
The answer is:
Example Question #56 : How To Find The Solution For A System Of Equations
Solve only for given the two equations:
In order to solve for , multiply the first equation by four in order to eliminate the fractions in front of the coefficients.
The first equation becomes:
The second equation remains the same:
Subtract the second equation with the first equation:
The result is:
Divide by two on both sides.
Simplify both sides.
The answer is:
Example Question #322 : Equations / Inequalities
Solve for only:
In order to solve for the variable, we will need to use the elimination method.
Subtract the first equation with the second equation in order to eliminate the variable to solve for .
After subtracting equation one with equation two:
Use this value and either equation to solve for . Let's choose the first equation.
Subtract twelve from both sides.
Simplify both sides.
The answer is:
Example Question #51 : How To Find The Solution For A System Of Equations
Read, but do not solve, the following problem:
Adult tickets to the zoo sell for $11; child tickets sell for $7. One day, 6,035 tickets were sold, resulting in $50,713 being raised. How many adult and child tickets were sold?
If and stand for the number of adult and child tickets, respectively, which of the following systems of equations can be used to answer this question?
6,035 total tickets were sold, and the total number of tickets is the sum of the adult and child tickets, .
Therefore, we can say .
The amount of money raised from adult tickets is $11 per ticket mutiplied by tickets, or dollars; similarly, dollars are raised from child tickets. Add these together to get the total amount of money raised:
These two equations form our system of equations.
Example Question #81 : New Sat Math Calculator
A blue train leaves San Francisco at 8AM going 80 miles per hour. At the same time, a green train leaves Los Angeles, 380 miles away, going 60 miles per hour. Assuming that they are headed towards each other, when will they meet, and about how far away will they be from San Francisco?
Around 2:45AM, about 200.15 miles away from San Francisco
Around 10:43AM, about 217.12 miles away from San Francisco
Around 3AM the next day, about 1,520 miles away from San Francisco
The two trains will never meet.
Around 10:43AM, about 217.12 miles away from San Francisco
This system can be solved a variety of ways, including graphing. To solve algebraically, write an equation for each of the different trains. We will use y to represent the distance from San Francisco, and x to represent the time since 8AM.
The blue train travels 80 miles per hour, so it adds 80 to the distance from San Francisco every hour. Algebraically, this can be written as .
The green train starts 380 miles away from San Francisco and subtracts distance every hour. This equation should be .
To figure out where these trains' paths will intersect, we can set both right sides equal to each other, since the left side of each is .
add to both sides
divide both sides by 140
Since we wrote the equation meaning time for , this means that the trains will cross paths after 2.714 hours have gone by. To figure out what time it will be then, figure out how many minutes are in 0.714 hours by multiplying . So the trains intersect after 2 hours and about 43 minutes, so at 10:43AM.
To figure out how far from San Francisco they are, figure out how many miles the blue train could have gone in 2.714 hours. In other words, plug 2.714 back into the equation , giving you an answer of .
Example Question #201 : Systems Of Equations
We have three dogs: Joule, Newton, and Toby. Joule is three years older than twice Newton's age. Newton is Toby's age younger than eleven years. Toby is one year younger than Joules age. Find the age of each dog.
Joule: 9 years
Newton: 3 years
Toby: 8 year
Joule: 12 years
Newton: 1 year
Toby: 5 year
Joule: 8 years
Newton: 4 years
Toby: 8 year
Joule: 5 years
Newton: Not born yet
Toby: 1 year
none of these
Joule: 9 years
Newton: 3 years
Toby: 8 year
First, translate the problem into three equations. The statement, "Joule is three years older than twice Newton's age" is mathematically translated as
where represents Joule's age and is Newton's age.
The statement, "Newton is Toby's age younger than eleven years" is translated as
where is Toby's age.
The third statement, "Toby is one year younger than Joule" is
.
So these are our three equations. To figure out the age of these dogs, first I will plug the third equation into the second equation. We get
Plug this equation into the first equation to get
Solve for . Add to both sides
Divide both sides by 3
So Joules is 9 years old. Plug this value into the third equation to find Toby's age
Toby is 8 years old. Use this value to find Newton's age using the second equation
Now, we have the age of the following dogs:
Joule: 9 years
Newton: 3 years
Toby: 8 years