Algebra 1 : Algebra 1

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #12 : Converting Measurements

Convert \(\displaystyle 6\) pounds to ounces.

Possible Answers:

\(\displaystyle 96\)

\(\displaystyle 40\)

\(\displaystyle 48\)

\(\displaystyle 0.375\)

\(\displaystyle 80\)

Correct answer:

\(\displaystyle 96\)

Explanation:

We know \(\displaystyle 16\) ounces make up \(\displaystyle 1\) pound. Since we are looking for \(\displaystyle 6\) pounds in ounces, we can write a proportion.

\(\displaystyle \frac{1\ pound}{16\ ounces}=\frac{6\ pounds}{x\ ounces}\) 

Cross-multiply. 

\(\displaystyle (x\ ounces)(1\ pound)=(16\ ounces)(6\ pounds)\)

Divide each side by \(\displaystyle 1\) pound.

\(\displaystyle x\ ounces=6(16\ ounces)\)

\(\displaystyle x=96\ ounces\)

Therefore, \(\displaystyle 6\ pounds=96\ ounces\).

Example Question #12 : Converting Measurements

Convert \(\displaystyle 3\) liters to milliliters. 

Possible Answers:

\(\displaystyle 3000\)

\(\displaystyle .03\)

\(\displaystyle 30000\)

\(\displaystyle 300\)

\(\displaystyle .003\)

Correct answer:

\(\displaystyle 3000\)

Explanation:

We know \(\displaystyle 1000\) milliliters make up \(\displaystyle 1\) liter. Since we are looking for \(\displaystyle 3\) liters in milliliters, we can write a proportion.

\(\displaystyle \frac{1\ liter}{1000\ milliliters}=\frac{3\ liters}{x\ milliliters}\) 

Cross-multiply. 

\(\displaystyle (x\ milliliters)(1\ liter)=(3\ liters)(1000\ milliliters)\)

Divide by \(\displaystyle 1\) liter.

\(\displaystyle x\ milliliters=3(1000\ milliliters)\)

\(\displaystyle x=3000\ milliliters\)

Therefore, \(\displaystyle 3\ liters=3000\ milliliters\).

 

 

Example Question #21 : Converting Measurements

Convert \(\displaystyle 7000\) milliliters to liters. 

Possible Answers:

\(\displaystyle 7000000\)

\(\displaystyle 70\)

\(\displaystyle 10\)

\(\displaystyle 7\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 7\)

Explanation:

We know \(\displaystyle 1000\) milliliters make up \(\displaystyle 1\) liter. Since we are looking for \(\displaystyle 7000\) milliliters in liters, we can write a proportion.

\(\displaystyle \frac{1\ liter}{1000\ milliliters}=\frac{x\ liters}{7000\ milliliters}\)

 Cross-multiply.

\(\displaystyle (x\ liters)(1000 milliliters)=(1\ liter)(7000\ milliliters)\)

Divide both sides by \(\displaystyle 1000\) milliliters. 

\(\displaystyle x\ liters= 7(1\ liter)\)

\(\displaystyle x=7\ liters\)

Therefore, \(\displaystyle 7000\ millimeters=7\ liters\).

 

Example Question #1251 : Linear Equations

Convert \(\displaystyle 4\) yards to feet. 

Possible Answers:

\(\displaystyle 1.33\)

\(\displaystyle 12\)

\(\displaystyle 15\)

\(\displaystyle 9\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 12\)

Explanation:

We know \(\displaystyle 3\) feet make up \(\displaystyle 1\) yard. Since we are looking for \(\displaystyle 4\) yards in feet, we can write a proportion.

\(\displaystyle \frac{1\ yard}{3\ feet}=\frac{4\ yards}{x\ feet}\) 

Cross-multiply. 

\(\displaystyle (x\ feet)(1\ yard)=(3\ feet)(4\ yards)\)

Divide each side by \(\displaystyle 1\) yard.

\(\displaystyle x\ feet=4(3\ feet)\)

\(\displaystyle x=12\ feet\)

Therefore, \(\displaystyle 4\ yards=12\ feet\).

 

Example Question #21 : Converting Measurements

Convert \(\displaystyle 21\) feet to yards.

Possible Answers:

\(\displaystyle 15\)

\(\displaystyle 6\)

\(\displaystyle 9\)

\(\displaystyle 63\)

\(\displaystyle 7\)

Correct answer:

\(\displaystyle 7\)

Explanation:

We know \(\displaystyle 3\) feet make up \(\displaystyle 1\) yard. Since we are looking for \(\displaystyle 21\) feet in yards, we can write a proportion.

\(\displaystyle \frac{1\ yard}{3\ feet}=\frac{x\ yards}{21\ feet}\) 

Cross-multiply.

\(\displaystyle (x\ yards)(3\ feet)=(1\ yard)(21\ feet)\)

Divide both sides by \(\displaystyle 3\) feet. 

\(\displaystyle x\ yards=7(1\ yard)\)

\(\displaystyle x=7\ yards\)

Therefore, \(\displaystyle 21\ feet=7\ yards\).

Example Question #21 : Converting Measurements

Convert \(\displaystyle 5.75\) pounds to ounces. 

Possible Answers:

\(\displaystyle 88\)

\(\displaystyle 9200\)

\(\displaystyle 82\)

\(\displaystyle 96\)

\(\displaystyle 92\)

Correct answer:

\(\displaystyle 92\)

Explanation:

We know \(\displaystyle 16\) ounces make up \(\displaystyle 1\) pound. Since we are looking for \(\displaystyle 5.75\) pounds in ounces, we can write a proportion.

\(\displaystyle \frac{1\ pound}{16\ ounces}=\frac{5.75\ pounds}{x\ ounces}\)

Cross-multiply.

\(\displaystyle (x\ ounces)(1\ pound)=(16\ ounces)(5.75\ pounds)\)

Divide each side by \(\displaystyle 1\) pound.

\(\displaystyle x\ ounces= 5.75(16\ ounces)\)

\(\displaystyle x=92\ ounces\)

 

Remember, we have to place the decimal point between the \(\displaystyle 2\) and \(\displaystyle 0\) since we are dealing with a decimal value and we shift two decimal places to the right \(\displaystyle (92.00)\)

Therefore, \(\displaystyle 5.75\ pounds=92\ ounces\).

Example Question #1251 : Linear Equations

Convert \(\displaystyle 18\) inches to feet. 

Possible Answers:

\(\displaystyle 1.6\)

\(\displaystyle 1.7\)

\(\displaystyle 2\)

\(\displaystyle 1.5\)

\(\displaystyle 1.8\)

Correct answer:

\(\displaystyle 1.5\)

Explanation:

We know \(\displaystyle 12\) inches make up \(\displaystyle 1\) foot. Since we are looking for \(\displaystyle 18\) inches in feet, we can write a proportion.

\(\displaystyle \frac{1\ foot}{12\ inches}=\frac{x\ feet}{18\ inches}\) 

Cross-multiply.

\(\displaystyle (x\ feet)(12\ inches)=(1\ foot)(18\ inches)\)

Divide each side by \(\displaystyle 12\) inches. 

\(\displaystyle x\ feet=(1\ foot) (\frac{18\ inches}{12\ inches})\)

Solve for \(\displaystyle (\frac{18\ inches}{12\ inches})\).

Inches will cross out and leave the fraction \(\displaystyle \tfrac{18}{12}\).

\(\displaystyle \frac{18}{12}=\frac{3}{2}=1\frac{1}{2}=1.5\)

Replace the fraction \(\displaystyle (\frac{18\ inches}{12\ inches})\) with \(\displaystyle 1.5\) in the equation \(\displaystyle x\ feet=(1\ foot) (\frac{18\ inches}{12\ inches})\).

\(\displaystyle x\ feet=1.5(1\ foot)\)

\(\displaystyle x=1.5\ feet\)

Therefore, \(\displaystyle 18\ inches=1.5\ feet\).

Example Question #26 : Converting Measurements

Convert \(\displaystyle 3\) yards to inches.

Possible Answers:

\(\displaystyle 54\)

\(\displaystyle 48\)

\(\displaystyle 9\)

\(\displaystyle 108\)

\(\displaystyle 36\)

Correct answer:

\(\displaystyle 108\)

Explanation:

First, let's go from yards to feet. 

We know \(\displaystyle 3\) feet make up \(\displaystyle 1\) yard. Since we are looking for \(\displaystyle 3\) yards in feet, we can write a proportion.

\(\displaystyle \frac{1\ yard}{3\ feet}=\frac{3\ yards}{x\ feet}\)

Cross-multiply. 

\(\displaystyle (x\ feet)(1\ yard)=(3\ feet)(3\ yards)\)

Divide each side by \(\displaystyle 1\) yard.

\(\displaystyle (x\ feet)=3(3\ feet)\)

\(\displaystyle x=9\ feet\)

Therefore, \(\displaystyle 3\ yards=9\ feet\).

Now we convert feet to inches.

We know \(\displaystyle 12\) inches make up \(\displaystyle 1\) foot. Since we are looking for inches in \(\displaystyle 9\) feet, we can write a proportion.

\(\displaystyle \frac{1\ foot}{12\ inches}=\frac{9\ feet}{x\ inches}\)

Cross-multiply.

\(\displaystyle (x\ inches)(1\ foot)= (12\ inches)(9\ feet)\)

Divide each side by \(\displaystyle 1\) foot.

\(\displaystyle x\ inches=9(12\ inches)\)

\(\displaystyle x=108\ inches\)

Therefore, \(\displaystyle 9\ feet =108\ inches\).

So overall: \(\displaystyle 3\ yards=108\ inches\).

Example Question #1251 : Linear Equations

Convert \(\displaystyle 80\) ounces to pounds.

Possible Answers:

\(\displaystyle 120\)

\(\displaystyle 3\)

\(\displaystyle 1080\)

\(\displaystyle 5\)

\(\displaystyle 540\)

Correct answer:

\(\displaystyle 5\)

Explanation:

We know \(\displaystyle 16\) ounces make up \(\displaystyle 1\) pound. Since we are looking for the number of pounds in \(\displaystyle 80\) ounces, we can write a proportion.

\(\displaystyle \frac{1\ pound}{16\ ounces}=\frac{x\ pounds}{80\ ounces}\) 

Cross-multiply.

\(\displaystyle (x\ pounds)(16\ ounces)=(1\ pound)(80\ ounces)\)

Divide both sides by \(\displaystyle 16\) ounces. 

\(\displaystyle x\ pounds=5(1\ pound)\)

\(\displaystyle x=5\ pounds\)

Therefore, \(\displaystyle 80\ ounces = 5\ pounds\).

Example Question #1252 : Linear Equations

How many eggs are in \(\displaystyle 4\tfrac{1}{3}\) dozen if there are \(\displaystyle 12\) eggs in a dozen?

Possible Answers:

\(\displaystyle 52\)

\(\displaystyle 53\)

\(\displaystyle 51\)

\(\displaystyle 48\)

\(\displaystyle 61\)

Correct answer:

\(\displaystyle 52\)

Explanation:

We know \(\displaystyle 12\) eggs make up \(\displaystyle 1\) dozen. Since we are looking for \(\displaystyle 4\tfrac{1}{3}\) dozen in eggs, we can write a proportion.

\(\displaystyle \frac{1\ dozen}{12\ eggs}=\frac{4\tfrac{1}{3}\ dozen}{x\ eggs}\) 

Cross-multiply.

\(\displaystyle (x\ eggs)(1\ dozen)=(12\ eggs)(4\tfrac{1}{3}\ dozen )\)

Divide each side by \(\displaystyle 1\) dozen.

\(\displaystyle x\ eggs=4\tfrac{1}{3}(12\ eggs)\)

Convert the mixed number into an improper fraction by multiplying denominator with the whole number followed by adding the numerator. Then we write that value over the denominator. 

\(\displaystyle \frac{(3*4)+1}{3}=\frac{13}{3}\)

Replace the mixed number \(\displaystyle 4\tfrac{1}{3}\) with the improper fraction \(\displaystyle \tfrac{13}{3}\) in the equation  \(\displaystyle x\ eggs=4\tfrac{1}{3}(12\ eggs)\).

\(\displaystyle x\ eggs=\frac{13}{3}(12\ eggs)\)

Solve.

\(\displaystyle x\ eggs=\frac{13}{3}*\frac{12\ eggs}{1}\)

Cross out the \(\displaystyle 3\) and reduce.

\(\displaystyle x\ eggs=\frac{13}{1}*\frac{4\ eggs}{1}\)

\(\displaystyle x\ eggs=13(4\ eggs)\)

\(\displaystyle x=52\ eggs\)

Therefore, \(\displaystyle 4\tfrac{1}{3}\ dozen = 52\ eggs\).

Learning Tools by Varsity Tutors