Advanced Geometry : Advanced Geometry

Study concepts, example questions & explanations for Advanced Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : Coordinate Geometry

Give the \displaystyle x-coordinate of the \displaystyle x-intercept of the graph of the function 

\displaystyle f(x) = 2 \cdot 10 ^{x} - 8

Possible Answers:

\displaystyle -8

\displaystyle 4

\displaystyle -6

\displaystyle 10,000

\displaystyle \log 4

Correct answer:

\displaystyle \log 4

Explanation:

The \displaystyle x-intercept(s) of the graph of \displaystyle f(x) are the point(s) at which it intersects the \displaystyle x-axis. The \displaystyle y-coordinate of each is 0,; their \displaystyle x-coordinate(s) are those value(s) of \displaystyle x for which \displaystyle f(x) = 0, so set up, and solve for \displaystyle x, the equation:

\displaystyle f(x)= 0

\displaystyle 2 \cdot 10 ^{x} - 8 = 0

Add 8 to both sides:

\displaystyle 2 \cdot 10 ^{x} - 8 + 8 = 0 + 8

\displaystyle 2 \cdot 10 ^{x} = 8

Divide both sides by 2:

\displaystyle \frac{2 \cdot 10 ^{x}}{2} =\frac{ 8}{2}

\displaystyle 10 ^{x} =4

Take the common logarithm of both sides to eliminate the base:

\displaystyle \log 10 ^{x} =\log 4

\displaystyle x=\log 4

Example Question #51 : Graphing

Give the domain of the function \displaystyle f(x) = 2e^{x-3}- 7.

Possible Answers:

\displaystyle \left \{ x|x> -7\right \}

The set of all real numbers

\displaystyle \left \{ x|x \ge -7\right \}

\displaystyle \left \{ x|x \ge -3\right \}

\displaystyle \left \{ x|x> -3\right \}

Correct answer:

The set of all real numbers

Explanation:

Let \displaystyle g(x) = e^{x}. This function is defined for any real number \displaystyle x, so the domain of \displaystyle g(x) is the set of all real numbers. In terms of \displaystyle g(x),

\displaystyle f(x) = 2g(x-3) - 7

Since \displaystyle g(x) is defined for all real \displaystyle x, so is \displaystyle g(x-3); it follows that \displaystyle f(x) is as well. The correct domain is the set of all real numbers.

Example Question #52 : Graphing

Give the range of the function \displaystyle f(x) = 2e^{x-3}- 7.

Possible Answers:

\displaystyle [-7, \infty )

\displaystyle (-7, \infty )

\displaystyle [-3, \infty )

\displaystyle (-3, \infty )

The set of all real numbers

Correct answer:

\displaystyle (-7, \infty )

Explanation:

Since a positive number raised to any power is equal to a positive number, 

\displaystyle e^{x-3} > 0

Applying the properties of inequality, we see that

\displaystyle 2 \cdot e^{x-3} > 2 \cdot 0

\displaystyle 2 e^{x-3} > 0

\displaystyle 2 e^{x-3} -7 > 0 - 7

\displaystyle 2 e^{x-3} -7 > - 7

\displaystyle f(x) > - 7,

and the range of \displaystyle f(x) is the set \displaystyle (-7, \infty ).

Example Question #1 : Graphing A Quadratic Function

What are the possible values of \displaystyle A if the parabola of the quadratic function \displaystyle f (x) = Ax^{2} + 4x- 2  is concave upward and does not intersect the \displaystyle x-axis?

Possible Answers:

\displaystyle -2 < A < 0

\displaystyle -2 < A < 4

The parabola cannot exist for any value of \displaystyle A.

\displaystyle A > -2

\displaystyle A > 4

Correct answer:

The parabola cannot exist for any value of \displaystyle A.

Explanation:

If the graph of \displaystyle f (x) = Ax^{2} + 4x- 2 is concave upward, then \displaystyle A > 0

If the graph does not intersect the \displaystyle x-axis, then \displaystyle Ax^{2} + 4x- 2 = 0 has no real solution, and the discriminant \displaystyle 4^{2} - 4 \cdot A \cdot \left ( -2\right ) is negative:

\displaystyle 4^{2} - 4 \cdot A \cdot \left ( -2\right ) < 0

\displaystyle 16 +8 A < 0

\displaystyle 16 +8 A - 16 < 0 - 16

\displaystyle 8 A < - 16

\displaystyle 8 A \div 8< - 16 \div 8

\displaystyle A < -2

 

For the parabola to have both characteristics, it must be true that \displaystyle A < -2 and \displaystyle A > 0, but these two events are mutually exclusive. Therefore, the parabola cannot exist.

Example Question #751 : Geometry

Which of the following equations has as its graph a vertical parabola with line of symmetry \displaystyle x = 7 ?

Possible Answers:

\displaystyle f(x)= 7x^{2}+49x+140

\displaystyle f(x)=7x^{2}+98x+140

\displaystyle f(x)=7x^{2}-98x+140

\displaystyle f(x)=7x^{2} +140

\displaystyle f(x)=7x^{2}-49x+140

Correct answer:

\displaystyle f(x)=7x^{2}-98x+140

Explanation:

The graph of \displaystyle f(x)= Ax^{2}+Bx+ C has as its line of symmetry the vertical line of the equation

\displaystyle x=- \frac{B}{2A}

Since \displaystyle A=7 in each choice, we want to find \displaystyle B such that 

\displaystyle 7=- \frac{B}{2A} = - \frac{B}{2(7)} = - \frac{B}{14}

\displaystyle - \frac{B}{14} = 7

\displaystyle B = 7\cdot (-14)=-98

so the correct choice is \displaystyle f(x)=7x^{2}-98x+140.

Example Question #1 : Graphing A Quadratic Function

Which of the following equations has as its graph a concave-right horizontal parabola?

Possible Answers:

\displaystyle y=- 7x^{2}- 4x+13

\displaystyle x=7y^{2}- 4y+13

\displaystyle x=- 7y^{2}- 4y+13

\displaystyle y= 7x^{2}- 4x+13

None of the other responses gives a correct answer.

Correct answer:

\displaystyle x=7y^{2}- 4y+13

Explanation:

A horizontal parabola has as its equation, in standard form,

\displaystyle x= Ay^{2}+ By+ C,

with \displaystyle A,B,C real, \displaystyle A nonzero.

Its orientation depends on the sign of \displaystyle A. In the equation of a concave-right parabola, \displaystyle A is positive, so the correct choice is \displaystyle x=7y^{2}- 4y+13.

Example Question #1 : How To Graph A Quadratic Function

The graphs of the functions \displaystyle f(x) and \displaystyle g(x) have the same line of symmetry.

If we define \displaystyle f(x) = 2x^{2}+ 4x+7, which of the following is a possible definition of \displaystyle g(x) ?

Possible Answers:

\displaystyle g(x) = 2x^{2}+ 8x+7

\displaystyle g(x) = 2x^{2}-4x-7

None of the other responses gives a correct answer.

\displaystyle g(x) = x^{2}+ 4x+7

\displaystyle g(x) = 4x^{2}+8x+7

Correct answer:

\displaystyle g(x) = 4x^{2}+8x+7

Explanation:

The graph of a function of the form \displaystyle f(x)= Ax^{2}+Bx+C - a quadratic function - is a vertical parabola with line of symmetry \displaystyle x= - \frac{B}{2A}

The graph of the function \displaystyle f(x) = 2x^{2}+ 4x+7 therefore has line of symmetry 

\displaystyle x= - \frac{4}{2 (2)}, or \displaystyle x = -1

We examine all four definitions of \displaystyle g to find one with this line of symmetry.

 

\displaystyle g(x) = 2x^{2}-4x-7:

\displaystyle x= - \frac{-4}{2 (2)}, or \displaystyle x = 1

 

\displaystyle g(x) = x^{2}+ 4x+7:

\displaystyle x= - \frac{ 4}{2 (1)}, or \displaystyle x = -2

 

\displaystyle g(x) = 2x^{2}+ 8x+7

\displaystyle x= - \frac{ 8}{2 (2)}, or \displaystyle x = -2

 

\displaystyle g(x) = 4x^{2}+8x+7

\displaystyle x= - \frac{ 8}{2 (4)}, or \displaystyle x = -1

 

Since the graph of the function \displaystyle g(x) = 4x^{2}+8x+7 has the same line of symmetry as that of the function \displaystyle f(x) = 2x^{2}+ 4x+7, that is the correct choice.

Example Question #1 : How To Graph A Quadratic Function

Give the \displaystyle y-coordinate of a point at which the graphs of the equations 

\displaystyle y= x^{2}+ 2x- 7

and 

\displaystyle y = 2x^{2}- 6x+5

intersect.

Possible Answers:

\displaystyle 31

\displaystyle 51

\displaystyle 41

\displaystyle 21

\displaystyle 11

Correct answer:

\displaystyle 41

Explanation:

We can set the two quadratic expressions equal to each other and solve for \displaystyle x.

\displaystyle y= x^{2}+ 2x- 7 and \displaystyle y = 2x^{2}- 6x+5, so

\displaystyle 2x^{2}- 6x+5 = x^{2}+ 2x- 7

\displaystyle 2x^{2}- 6x+5 -( x^{2}+ 2x- 7)= x^{2}+ 2x- 7 -( x^{2}+ 2x- 7)

\displaystyle 2x^{2}- 6x+5 - x^{2}- 2x+ 7=0

\displaystyle x^{2}- 8x+12=0

\displaystyle (x-2)(x-6) = 0

The \displaystyle x-coordinates of the points of intersection are 2 and 6. To find the \displaystyle y-coordinates, substitute in either equation:

\displaystyle y= x^{2}+ 2x- 7

\displaystyle y= 2^{2}+ 2 \cdot 2 - 7

\displaystyle y= 4+4 - 7

\displaystyle y=1

One point of intersection is \displaystyle (2,1).

\displaystyle y= x^{2}+ 2x- 7

\displaystyle y= 6^{2}+ 2 \cdot 6 - 7

\displaystyle y= 36+ 12 - 7

\displaystyle y = 41

The other point of intersection is \displaystyle (6,41).

 

1 is not among the choices, but 41 is, so this is the correct response.

Example Question #51 : Coordinate Geometry

Give the set of intercepts of the graph of the function \displaystyle f(x)= \frac{1}{7} (x-7)^{2}.

Possible Answers:

\displaystyle \left \{ (-7,0), (0,7) \right \}

\displaystyle \left \{ (7,0), (0,-7),(0,7) \right \}

\displaystyle \left \{ (7,0), (0,7) \right \}

\displaystyle \left \{ (7,0), (0,-7) \right \}

\displaystyle \left \{ (-7,0), (0,-7),(0,7) \right \}

Correct answer:

\displaystyle \left \{ (7,0), (0,7) \right \}

Explanation:

The \displaystyle x-intercepts, if any exist, can be found by setting \displaystyle f(x) = 0:

\displaystyle f(x)= \frac{1}{7} (x-7)^{2} = 0

\displaystyle \frac{1}{7} (x-7)^{2} \cdot 7 = 0\cdot 7

\displaystyle (x-7)^{2} = 0

\displaystyle x-7 = 0

\displaystyle x= 7

The only \displaystyle x-intercept is \displaystyle (7,0).

 

The \displaystyle y-intercept can be found by substituting 0 for \displaystyle x:

\displaystyle f(0)= \frac{1}{7} (0-7)^{2} = \frac{1}{7} ( -7)^{2}= \frac{1}{7} \cdot 49 = 7

The \displaystyle y-intercept is \displaystyle (0,7).

 

The correct set of intercepts is \displaystyle \left \{ (7,0), (0,7) \right \}.

Example Question #7 : Graphing A Quadratic Function

Give the \displaystyle y-coordinate of a point of intersection of the graphs of the functions

\displaystyle f(x) = x^{2}- 4x+ 7

and 

\displaystyle g(x) = 4x.

Possible Answers:

\displaystyle 33

\displaystyle 28

\displaystyle 23

\displaystyle 13

\displaystyle 18

Correct answer:

\displaystyle 28

Explanation:

The system of equations can be rewritten as

\displaystyle y= x^{2}- 4x+ 7

\displaystyle y = 4x.

We can set the two expressions in \displaystyle x equal to each other and solve:

\displaystyle x^{2}- 4x+ 7 = 4x

\displaystyle x^{2}- 8x+ 7 =0

\displaystyle (x-1)(x-7)= 0

\displaystyle x= 1,x=7

We can substitute back into the equation \displaystyle y = 4x, and see that either \displaystyle y = 4 or \displaystyle y = 28. The latter value is the correct choice.

Learning Tools by Varsity Tutors