Advanced Geometry : Advanced Geometry

Study concepts, example questions & explanations for Advanced Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : Graphing An Exponential Function

Define a function \displaystyle f as follows:

\displaystyle f(x) = 3 ^{x-3}- 9

Give the \displaystyle x-intercept of the graph of \displaystyle f.

Possible Answers:

\displaystyle (9,0)

\displaystyle (5,0)

\displaystyle (12,0)

The graph of \displaystyle f has no \displaystyle x-intercept. 

\displaystyle (3,0)

Correct answer:

\displaystyle (5,0)

Explanation:

Since the \displaystyle x-intercept is the point at which the graph of \displaystyle f intersects the \displaystyle x-axis, the \displaystyle y-coordinate is 0, and the \displaystyle x-coordinate can be found by setting \displaystyle f(x) equal to 0 and solving for \displaystyle y. Therefore, we need to find \displaystyle x such that 

\displaystyle 3 ^{x-3}- 9 = 0

\displaystyle 3 ^{x-3}= 9

\displaystyle 3 ^{x-3}= 3 ^{2}

\displaystyle x-3 = 2

\displaystyle x = 5

The \displaystyle x-intercept is therefore \displaystyle (5,0).

Example Question #5 : Graphing An Exponential Function

Define a function \displaystyle f as follows:

\displaystyle f(x) = 2 ^{x-1} + 7

Give the horizontal aysmptote of the graph of \displaystyle f.

Possible Answers:

\displaystyle y = 1

\displaystyle y = 7

\displaystyle y = 2

\displaystyle y = 0

\displaystyle y = -\frac{7}{2}

Correct answer:

\displaystyle y = 7

Explanation:

The horizontal asymptote of an exponential function can be found by noting that a positive number raised to any power must be positive. Therefore, \displaystyle 2 ^{x-1} > 0 and \displaystyle y= 2 ^{x-1} + 7 > 7 for all real values of \displaystyle x. The graph will never crosst the line of the equatin \displaystyle y = 7, so this is the horizontal asymptote.

Example Question #6 : Graphing An Exponential Function

Define functions \displaystyle f and \displaystyle g as follows:

\displaystyle f(x) = 2^{x +2}

\displaystyle g(x) = 4^{x-1}

Give the \displaystyle y \,-coordinate of the point of intersection of their graphs.

Possible Answers:

\displaystyle 8

\displaystyle 16

\displaystyle 4

\displaystyle 64

\displaystyle 32

Correct answer:

\displaystyle 64

Explanation:

First, we rewrite both functions with a common base:

\displaystyle f(x) = 2^{x +2} is left as it is.

\displaystyle g(x) = 4^{x-1} can be rewritten as 

\displaystyle g(x) = \left (2 ^{2} \right )^{x-1}

\displaystyle g(x) = 2 ^{2 (x-1)}

\displaystyle g(x) = 2 ^{2x-2}

To find the point of intersection of the graphs of the functions, set 

\displaystyle f(x) = g(x)

\displaystyle 2^{x +2}= 2 ^{2x-2}

The powers are equal and the bases are equal, so we can set the exponents equal to each other and solve:

\displaystyle x+ 2= 2x-2

\displaystyle x+ 2 -x +2= 2x-2 -x +2

\displaystyle x = 4

To find the \displaystyle y\,-coordinate, substitute 4 for \displaystyle x in either definition:

\displaystyle f(x) = 2^{x +2}

\displaystyle f(4) = 2^{4+2}= 2^{6} = 64, the correct response.

Example Question #7 : Graphing An Exponential Function

Define a function \displaystyle f as follows:

\displaystyle f(x) = 4 ^{x+2} - 3

Give the \displaystyle y-intercept of the graph of \displaystyle f.

Possible Answers:

\displaystyle (0,13)

\displaystyle (0,2)

\displaystyle (0,1)

\displaystyle (0,-3)

\displaystyle \left ( 0, \frac{3}{4}\right )

Correct answer:

\displaystyle (0,13)

Explanation:

The \displaystyle x-coordinate ofthe \displaystyle y-intercept of the graph of \displaystyle f is 0, and its \displaystyle y-coordinate is \displaystyle f(0):

\displaystyle f(x) = 4 ^{x+2} - 3

\displaystyle f(0) = 4 ^{0+2} - 3 = 4 ^{2} - 3 = 16 - 3 = 13

The \displaystyle y-intercept is the point \displaystyle (0,13).

Example Question #1 : How To Graph An Exponential Function

Define functions \displaystyle f and \displaystyle g as follows:

\displaystyle f(x) = 3^{x +2}

\displaystyle g(x) =\left ( \frac{1}{9} \right )^{x-1}

Give the \displaystyle y \,-coordinate of the point of intersection of their graphs.

Possible Answers:

\displaystyle 3

\displaystyle 9

\displaystyle \sqrt{3}

\displaystyle 3\sqrt{3}

\displaystyle 9\sqrt{3}

Correct answer:

\displaystyle 9

Explanation:

First, we rewrite both functions with a common base:

\displaystyle f(x) = 3^{x +2} is left as it is.

\displaystyle g(x) =\left ( \frac{1}{9} \right )^{x-1} can be rewritten as 

\displaystyle g(x) =\left ( 3^{-2} \right )^{x-1}

\displaystyle g(x) = 3^{-2 (x-1)}

\displaystyle g(x) = 3^{-2 x+2}

To find the point of intersection of the graphs of the functions, set 

\displaystyle f(x) = g(x)

\displaystyle 3^{x +2} = 3^{-2 x+2}

Since the powers of the same base are equal, we can set the exponents equal:

\displaystyle x+2 = -2x + 2

\displaystyle x+2 + 2x -2 = -2x + 2 + 2x -2

\displaystyle 3x=0

\displaystyle x= 0

Now substitute in either function:

\displaystyle f(x) = 3^{x +2}

\displaystyle f(0) = 3^{0 +2} = 3^{ 2} = 9, the correct answer.

 

Example Question #9 : Graphing An Exponential Function

Define a function \displaystyle f as follows:

\displaystyle f(x) =5^{x-3}

Give the \displaystyle y-intercept of the graph of \displaystyle f.

Possible Answers:

\displaystyle \left ( 0, \frac{1}{243} \right )

\displaystyle \left ( 0,125 \right )

\displaystyle (0,15)

\displaystyle \left ( 0, \frac{1}{125} \right )

\displaystyle \left ( 0,243 \right )

Correct answer:

\displaystyle \left ( 0, \frac{1}{125} \right )

Explanation:

Since the \displaystyle y-intercept is the point at which the graph of \displaystyle f intersects the \displaystyle y-axis, the \displaystyle x-coordinate is 0, and the \displaystyle y-coordinate is \displaystyle f(0):

\displaystyle f(x) =5^{x-3}

\displaystyle f(0) =5^{0-3}= 5^{-3} = \frac{1}{5^{3}} = \frac{1}{125},

The  \displaystyle y-intercept is the point \displaystyle \left ( 0, \frac{1}{125} \right ).

Example Question #10 : Graphing An Exponential Function

\displaystyle 2 ^{x+1} + 3^{y} = 59

\displaystyle 2 ^{x } - 3^{y} = -11

Evaluate \displaystyle x+y.

Possible Answers:

\displaystyle 43

\displaystyle 11

The system has no solution.

\displaystyle 7

\displaystyle 12

Correct answer:

\displaystyle 7

Explanation:

Rewrite the system as 

\displaystyle 2 \cdot 2 ^{x} + 3^{y} = 59

\displaystyle 2 ^{x } - 3^{y} = -11

and substitute \displaystyle u and \displaystyle v for \displaystyle 2 ^{x } and \displaystyle 3^{y}, respectively, to form the system

\displaystyle 2u + v= 59

\displaystyle u- v= -11

Add both sides:

\displaystyle 2u + v= 5

\displaystyle \underline{u- v= 43}

\displaystyle 3u        \displaystyle =48

\displaystyle u = 16.

Now backsolve:

\displaystyle 16- v= -11

\displaystyle - v= - 27

\displaystyle v= 27

Now substitute back:

\displaystyle u = 16

\displaystyle 2 ^{x } = 16

\displaystyle x = 4

and

\displaystyle v= 27

\displaystyle 3^{y}= 27

\displaystyle y=3

\displaystyle x+y =4+3 = 7

Example Question #402 : Pre Calculus

Give the \displaystyle x-intercept of the graph of the function

\displaystyle f(x) = 5 \cdot 4^{x- 3}- 3

Round to the nearest tenth, if applicable.

Possible Answers:

\displaystyle ( -2.92, 0)

\displaystyle (2.63,0)

\displaystyle (3.65,0)

\displaystyle ( -3.08, 0)

The graph has no \displaystyle x-interceptx

Correct answer:

\displaystyle (2.63,0)

Explanation:

The \displaystyle x-intercept is \displaystyle (a,0), where \displaystyle f(a)= 0:

\displaystyle f(x) = 5 \cdot 4^{x- 3}- 3

\displaystyle 5 \cdot 4^{a- 3}- 3 = 0

\displaystyle 5 \cdot 4^{a- 3}- 3 + 3= 0 + 3

\displaystyle 5 \cdot 4^{a- 3}= 3

\displaystyle 5 \cdot 4^{a- 3} \div 5= 3 \div 5

\displaystyle 4^{a- 3} = 0.6

\displaystyle \ln \left (4^{a- 3} \right )=\ln 0.6

\displaystyle (a- 3)\ln 4 =\ln 0.6

\displaystyle a- 3=\frac{\ln 0.6}{\ln 4 } \approx \frac{-0.5108}{1.3863}\approx -0.3685

\displaystyle a- 3+3 \approx -0.3685 + 3

\displaystyle a \approx 2.63

The \displaystyle x-intercept is \displaystyle (2.63,0).

Example Question #71 : Graphing

Give the \displaystyle y-intercept of the graph of the function

\displaystyle f(x) = 5 \cdot 4^{x- 3}- 3

Round to the nearest hundredth, if applicable.

Possible Answers:

\displaystyle (0, -2.92)

\displaystyle (0,3.65)

\displaystyle (0, -3.08)

The graph has no \displaystyle y-intercept

\displaystyle ( 0, 2.63)

Correct answer:

\displaystyle (0, -2.92)

Explanation:

The \displaystyle y-intercept is \displaystyle (0, f(0)):

\displaystyle f(x) = 5 \cdot 4^{x- 3}- 3

\displaystyle f(0) = 5 \cdot 4^{0- 3}- 3

\displaystyle f(0) = 5 \cdot 4^{ - 3}- 3

\displaystyle f(0) = 5 \cdot \frac{1}{64}- 3

\displaystyle f(0) = \frac{5}{64}- 3

\displaystyle f(0) \approx 0.08 - 3 \approx -2.92

\displaystyle (0, -2.92) is the \displaystyle y-intercept.

Example Question #262 : Coordinate Plane

Give the vertical asymptote of the graph of the function 

\displaystyle g(x) = 16 \cdot 4^{x}- 3

Possible Answers:

The graph of \displaystyle g has no vertical asymptote.

\displaystyle y = 2

\displaystyle x = -3

\displaystyle y = -2

\displaystyle x = 3

Correct answer:

The graph of \displaystyle g has no vertical asymptote.

Explanation:

Since 4 can be raised to the power of any real number, the domain of \displaystyle f is the set of all real numbers. Therefore, there is no vertical asymptote of the graph of \displaystyle f.

Learning Tools by Varsity Tutors