All ACT Science Resources
Example Questions
Example Question #4 : How To Find Conflicting Viewpoints In Chemistry
There are two types of forces that occur with all substances on Earth. Intramolecular forces occur between atoms in a molecule, while intermolecular forces occur between neighboring molecules. Intermolecular forces can be dipole-dipole forces, hydrogen bonding, or London dispersion forces.
Professor 1:
Water molecules represent an example of hydrogen bonding due to the attraction between the hydrogen atoms and the oxygen atoms in the molecule. This strong dipole-dipole occurs due to lone pairs present on such atoms as Fluorine, Nitrogen, and Oxygen, which are able to pair more closely to the hydrogen atom in another nearby molecule. Water can be present in a solid, liquid, or gaseous state on Earth depending on the competition between the strength of intermolecular bonds and the thermal energy of the system. In 1873, a Dutch scientist, Van der Waals derived an equation that included both the force of attraction between the particles of a gas and the volume of the particles at high pressures. This equation led to a better fit for experimental data than the Ideal Gas Law.
Professor 2:
Water is the only substance on Earth that we routinely encounter as a solid, liquid, and gas. At low temperatures, the water molecules lock into a rigid structure, but as the temperature increases, the average kinetic energy of the water molecules increases and the molecules are able to move more creating its other natural states of matter. The higher the temperature, the more likely water is to be a gas. Water is proof of the kinetic theory, which assumes that there is no force of attraction between the particles of the gas state. The best fit for experimental data involving water in a gaseous form is found by using the Ideal Gas Law, since there is no interaction between the gaseous molecules. This law accounts for all of the forces that occur with gases on Earth.
Which of the following statements is professor 1 most likely to agree with?
The Ideal Gas Law is the best way to simulate experimental data involving gases on Earth.
Van der Waals is responsible for finding a better method to simulate experimental data involving gases on Earth.
The higher the temperature, the more likely water is to be a gas.
Water is the only example of hydrogen bonding that exists on Earth.
Van der Waals is responsible for finding a better method to simulate experimental data involving gases on Earth.
Professor 1 states that "In 1873, a Dutch scientist, Van der Waals derived an equation that... led to a better fit for experimental data than the Ideal Gas Law." This shows that the correct answer is "Van der Waals is responsible for finding a better method to simulate experimental data involving gases on Earth."
Additionally, "The higher the temperature, the more likely water is to be a gas." and "The Ideal Gas Law is the best way to simulate experimental data involving gases on Earth." are statements that match up with what professor 2 said in his statement. Finally, professor 1 states that "Water molecules represent AN example of hydrogen bonding" implying that water is one of many examples present.
Example Question #4 : How To Find Conflicting Viewpoints In Chemistry
There are two types of forces that occur with all substances on Earth. Intramolecular forces occur between atoms in a molecule, while intermolecular forces occur between neighboring molecules. Intermolecular forces can be dipole-dipole forces, hydrogen bonding, or London dispersion forces.
Professor 1:
Water molecules represent an example of hydrogen bonding due to the attraction between the hydrogen atoms and the oxygen atoms in the molecule. This strong dipole-dipole occurs due to lone pairs present on such atoms as Fluorine, Nitrogen, and Oxygen, which are able to pair more closely to the hydrogen atom in another nearby molecule. Water can be present in a solid, liquid, or gaseous state on Earth depending on the competition between the strength of intermolecular bonds and the thermal energy of the system. In 1873, a Dutch scientist, Van der Waals derived an equation that included both the force of attraction between the particles of a gas and the volume of the particles at high pressures. This equation led to a better fit for experimental data than the Ideal Gas Law.
Professor 2:
Water is the only substance on Earth that we routinely encounter as a solid, liquid, and gas. At low temperatures, the water molecules lock into a rigid structure, but as the temperature increases, the average kinetic energy of the water molecules increases and the molecules are able to move more creating its other natural states of matter. The higher the temperature, the more likely water is to be a gas. Water is proof of the kinetic theory, which assumes that there is no force of attraction between the particles of the gas state. The best fit for experimental data involving water in a gaseous form is found by using the Ideal Gas Law, since there is no interaction between the gaseous molecules. This law accounts for all of the forces that occur with gases on Earth.
Which of the following statements would professor 2 agree with?
At low temperatures, water is present as a gas.
The state of water is dependent upon the strength of intramolecular forces and the thermal energy present in the system.
Van der Waals' equation most closely mirrors the gas interactions that occur in nature.
The Ideal Gas Law most closely mirrors the gas interactions that occur in nature.
The Ideal Gas Law most closely mirrors the gas interactions that occur in nature.
Professor 2 states "The best fit for experimental data involving water in a gaseous form is found by using the Ideal Gas Law" so the correct answer is "The Ideal Gas Law most closely mirrors the gas interactions that occur in nature."
Additionally, "Van der Waals' equation most closely mirrors the gas interactions that occur in nature." and "The state of water is dependent upon the strength of intramolecular forces and the thermal energy present in the system." are both statements that match up with the first professor's statements. Finally, professor 2 states "The higher the temperature, the more likely water is to be a gas" , not "At low temperatures, water is present as a gas."
Example Question #1 : How To Find Conflicting Viewpoints In Chemistry
There are two types of forces that occur with all substances on Earth. Intramolecular forces occur between atoms in a molecule, while intermolecular forces occur between neighboring molecules. Intermolecular forces can be dipole-dipole forces, hydrogen bonding, or London dispersion forces.
Professor 1:
Water molecules represent an example of hydrogen bonding due to the attraction between the hydrogen atoms and the oxygen atoms in the molecule. This strong dipole-dipole occurs due to lone pairs present on such atoms as Fluorine, Nitrogen, and Oxygen, which are able to pair more closely to the hydrogen atom in another nearby molecule. Water can be present in a solid, liquid, or gaseous state on Earth depending on the competition between the strength of intermolecular bonds and the thermal energy of the system. In 1873, a Dutch scientist, Van der Waals derived an equation that included both the force of attraction between the particles of a gas and the volume of the particles at high pressures. This equation led to a better fit for experimental data than the Ideal Gas Law.
Professor 2:
Water is the only substance on Earth that we routinely encounter as a solid, liquid, and gas. At low temperatures, the water molecules lock into a rigid structure, but as the temperature increases, the average kinetic energy of the water molecules increases and the molecules are able to move more creating its other natural states of matter. The higher the temperature, the more likely water is to be a gas. Water is proof of the kinetic theory, which assumes that there is no force of attraction between the particles of the gas state. The best fit for experimental data involving water in a gaseous form is found by using the Ideal Gas Law, since there is no interaction between the gaseous molecules. This law accounts for all of the forces that occur with gases on Earth.
With which of the following statements would both professors agree?
Water is proof of the Kinetic Theory.
Van der Waals' equation is used to simulate experimental data invloving gases.
The Ideal Gas Law is used to simulate experimental data involving gases.
The state of water is dependent upon the thermal energy of the system.
The Ideal Gas Law is used to simulate experimental data involving gases.
Both professors mention the Ideal Gas Law as a method used to mirror experimental data using a math equation. Though professor 1 prefers using the Van der Waals' equation, he still mentions the Ideal Gas Law as the traditional option used.
Example Question #4 : How To Find Conflicting Viewpoints In Chemistry
There are two types of forces that occur with all substances on Earth. Intramolecular forces occur between atoms in a molecule, while intermolecular forces occur between neighboring molecules. Intermolecular forces can be dipole-dipole forces, hydrogen bonding, or London dispersion forces.
Professor 1:
Water molecules represent an example of hydrogen bonding due to the attraction between the hydrogen atoms and the oxygen atoms in the molecule. This strong dipole-dipole occurs due to lone pairs present on such atoms as Fluorine, Nitrogen, and Oxygen, which are able to pair more closely to the hydrogen atom in another nearby molecule. Water can be present in a solid, liquid, or gaseous state on Earth depending on the competition between the strength of intermolecular bonds and the thermal energy of the system. In 1873, a Dutch scientist, Van der Waals derived an equation that included both the force of attraction between the particles of a gas and the volume of the particles at high pressures. This equation led to a better fit for experimental data than the Ideal Gas Law.
Professor 2:
Water is the only substance on Earth that we routinely encounter as a solid, liquid, and gas. At low temperatures, the water molecules lock into a rigid structure, but as the temperature increases, the average kinetic energy of the water molecules increases and the molecules are able to move more creating its other natural states of matter. The higher the temperature, the more likely water is to be a gas. Water is proof of the kinetic theory, which assumes that there is no force of attraction between the particles of the gas state. The best fit for experimental data involving water in a gaseous form is found by using the Ideal Gas Law, since there is no interaction between the gaseous molecules. This law accounts for all of the forces that occur with gases on Earth.
Which statement would both professors agree with?
Lone pairs present on N, O, and F are able to pair more closely with the H atoms in water.
Water is a substance that is present on Earth as a solid, liquid, and gas.
London Dispersion Forces are the only forces present in water.
Water is proof of the Kinetic Theory.
Water is a substance that is present on Earth as a solid, liquid, and gas.
Both professors mention the fact that water is encountered on Earth as a solid, liquid, and gas. The other answers are either only mentioned by one professor or neither professor.
Example Question #4 : How To Find Conflicting Viewpoints In Chemistry
There are two types of forces that occur with all substances on Earth. Intramolecular forces occur between atoms in a molecule, while intermolecular forces occur between neighboring molecules. Intermolecular forces can be dipole-dipole forces, hydrogen bonding, or London dispersion forces.
Professor 1:
Water molecules represent an example of hydrogen bonding due to the attraction between the hydrogen atoms and the oxygen atoms in the molecule. This strong dipole-dipole occurs due to lone pairs present on such atoms as Fluorine, Nitrogen, and Oxygen, which are able to pair more closely to the hydrogen atom in another nearby molecule. Water can be present in a solid, liquid, or gaseous state on Earth depending on the competition between the strength of intermolecular bonds and the thermal energy of the system. In 1873, a Dutch scientist, Van der Waals derived an equation that included both the force of attraction between the particles of a gas and the volume of the particles at high pressures. This equation led to a better fit for experimental data than the Ideal Gas Law.
Professor 2:
Water is the only substance on Earth that we routinely encounter as a solid, liquid, and gas. At low temperatures, the water molecules lock into a rigid structure, but as the temperature increases, the average kinetic energy of the water molecules increases and the molecules are able to move more creating its other natural states of matter. The higher the temperature, the more likely water is to be a gas. Water is proof of the kinetic theory, which assumes that there is no force of attraction between the particles of the gas state. The best fit for experimental data involving water in a gaseous form is found by using the Ideal Gas Law, since there is no interaction between the gaseous molecules. This law accounts for all of the forces that occur with gases on Earth.
Which of these statements made by professor 2 is not contradicted by professor 1?
There is no force of attraction between water's molecules in the gaseous state.
As temperature increases, the average kinetic energy of the water molecules increases.
The best fit for experimental data involving water in a gaseous state is found by using the Ideal Gas Law.
The Ideal Gas Law accounts for all of the forces that occur with gases.
As temperature increases, the average kinetic energy of the water molecules increases.
All of the other answer choices are proven wrong with the first professor's statements. The only choice that involves a statement only dicussed by professor 2 is "As temperature increases, the average kinetic energy of the water molecules increases."
Example Question #161 : Chemistry
There are two types of forces that occur with all substances on Earth. Intramolecular forces occur between atoms in a molecule, while intermolecular forces occur between neighboring molecules. Intermolecular forces can be dipole-dipole forces, hydrogen bonding, or London dispersion forces.
Professor 1:
Water molecules represent an example of hydrogen bonding due to the attraction between the hydrogen atoms and the oxygen atoms in the molecule. This strong dipole-dipole occurs due to lone pairs present on such atoms as Fluorine, Nitrogen, and Oxygen, which are able to pair more closely to the hydrogen atom in another nearby molecule. Water can be present in a solid, liquid, or gaseous state on Earth depending on the competition between the strength of intermolecular bonds and the thermal energy of the system. In 1873, a Dutch scientist, Van der Waals derived an equation that included both the force of attraction between the particles of a gas and the volume of the particles at high pressures. This equation led to a better fit for experimental data than the Ideal Gas Law.
Professor 2:
Water is the only substance on Earth that we routinely encounter as a solid, liquid, and gas. At low temperatures, the water molecules lock into a rigid structure, but as the temperature increases, the average kinetic energy of the water molecules increases and the molecules are able to move more creating its other natural states of matter. The higher the temperature, the more likely water is to be a gas. Water is proof of the kinetic theory, which assumes that there is no force of attraction between the particles of the gas state. The best fit for experimental data involving water in a gaseous form is found by using the Ideal Gas Law, since there is no interaction between the gaseous molecules. This law accounts for all of the forces that occur with gases on Earth.
A 3rd professor mentions that he has he has seen Hydrogen Bonding have an effect on his experimental results. What would each professor say about his statement?
Professor 2 would agree with him and suggest he use the Ideal Gas Law, while professor 1 would say that thermal energy is the actual cause of professor 3's issue.
Professor 1 would agree with him and suggest that professor 3 use Van der Waals' equation, while professor 2 would disagree citing the kinetic theory.
Professor 1 and Professor 2 would agree with him.
Both Professors would diasgree with him, though for different reasons.
Professor 1 would agree with him and suggest that professor 3 use Van der Waals' equation, while professor 2 would disagree citing the kinetic theory.
Professor 1 believes that use of the Van der Waals' equation is better than the Ideal Gas Law because it takes into effect the interaction between gas particles (such as Hydrogen Bonding). Professor 2 believes that there is no interaction between gas particles so the Ideal Gas Law is the best way to estimate experimental data.
Example Question #3 : How To Find Conflicting Viewpoints In Chemistry
In its refined form, iron is a shiny, silver-gray metal; however, when refined iron is exposed to atmospheric conditions for an extended period of time, its surface becomes flaky, pitted, and red- or orange-colored. This process is known as "rusting," and the new flaky, orange or red substance is called "rust."
Below, two scientists discuss how rust forms and the composition of rust.
Scientist 1:
Both water and oxygen are needed for rust to form. Water is an electrolyte, meaning that it allows ions to move within it. When iron comes into contact with water, some iron naturally dissociates into iron ions (Fe2+) and free electrons. Additionally, when atmospheric oxygen (O2) dissolves in water, some oxygen reacts with water to form hydroxide ions (OH-). Because water allows ions to move freely, iron ions and hydroxide ions combine to form a new compound: iron hydroxide. However, iron hydroxide is not a stable compound. Over time, as water evaporates, it changes into a hydrated form of iron oxide. This is rust.
Salts can act as catalysts for rust formation, meaning that they speed up the rate at which rust forms. However, rust can form in pure water, in the absence of added salts.
Increasing the ambient temperature increases the rate of rust formation. Additionally, increasing the amount of iron's surface area that is exposed to water also increases the rate at which rust forms. However, because a layer of rust is porous to water and oxygen, water and oxygen will continue to cause the interior of a piece of iron to rust even after the iron's surface has been rusted.
Scientist 2:
Attack by acids causes rust to form. In water, acids ionize to create positively-charged hydronium (H+) ions and negatively-charged anions. Hydronium ions are electron-deficient; because of this, they attract electrons from iron. This creates iron ions (Fe2+), which are soluble in water. Once dissolved in water, iron ions react with dissolved atmospheric oxygen (O2) to create iron oxide, or rust.
Acids can come from a variety of sources. For example, when carbon dioxide in the atmosphere dissolves in water, carbonic acid (H2CO3) is created. Carbonic acid is the most common cause of rusting. However, other environmental sources of acids exist. Rainwater is normally slightly acidic because it has come into contact with molecules in the atmosphere, like sulfur dioxide and nitrogen oxides. These molecules also dissolve in water to form acids. Additionally, iron itself may contain impurities such as phosphorous and sulfur, which react with water to produce acids. Both acidic environments and impurities within iron itself create the conditions under which iron rusts.
Rusting can be prevented by painting the surface of iron, thus preventing it from coming into contact with water, oxygen, and acids. Iron can also be protected in a process called "galvanizing," which involves coating iron in a thin layer of zinc. Because zinc is more reactive than iron, it is corroded while the iron is protected.
Boiling water does not contain dissolved oxygen. Suppose that a new piece of iron is immersed in boiling water for an extended period of time. Afterwards, scientists observe that the iron has rusted. How would this affect the arguments of Scientist 1 and Scientist 2?
It would strengthen Scientist 1's argument, and it would weaken Scientist 2's argument.
It would weaken Scientist 1's argument, and it would weaken Scientist 2's argument.
It would strengthen Scientist 1's argument, and it would strengthen Scientist 2's argument.
It would weaken Scientist 1's argument, and it would strengthen Scientist 2's argument.
It would weaken Scientist 1's argument, and it would have no effect on Scientist 2's argument.
It would weaken Scientist 1's argument, and it would weaken Scientist 2's argument.
The arguments of both Scientist 1 and Scientist 2 involve atmospheric oxygen diffusing into water. For both scientists, this is one of the necessary events leading up to the formation of rust. According to the question, however, boiling water does not contain dissolved oxygen. So, if iron still rusted in water that did not contain oxygen, this would imply that the explanations of both Scientist 1 and Scientist 2 are wrong or incomplete.
Example Question #161 : Chemistry
In its refined form, iron is a shiny, silver-gray metal; however, when refined iron is exposed to atmospheric conditions for an extended period of time, its surface becomes flaky, pitted, and red- or orange-colored. This process is known as "rusting," and the new flaky, orange or red substance is called "rust."
Below, two scientists discuss how rust forms and the composition of rust.
Scientist 1:
Both water and oxygen are needed for rust to form. Water is an electrolyte, meaning that it allows ions to move within it. When iron comes into contact with water, some iron naturally dissociates into iron ions (Fe2+) and free electrons. Additionally, when atmospheric oxygen (O2) dissolves in water, some oxygen reacts with water to form hydroxide ions (OH-). Because water allows ions to move freely, iron ions and hydroxide ions combine to form a new compound: iron hydroxide. However, iron hydroxide is not a stable compound. Over time, as water evaporates, it changes into a hydrated form of iron oxide. This is rust.
Salts can act as catalysts for rust formation, meaning that they speed up the rate at which rust forms. However, rust can form in pure water, in the absence of added salts.
Increasing the ambient temperature increases the rate of rust formation. Additionally, increasing the amount of iron's surface area that is exposed to water also increases the rate at which rust forms. However, because a layer of rust is porous to water and oxygen, water and oxygen will continue to cause the interior of a piece of iron to rust even after the iron's surface has been rusted.
Scientist 2:
Attack by acids causes rust to form. In water, acids ionize to create positively-charged hydronium (H+) ions and negatively-charged anions. Hydronium ions are electron-deficient; because of this, they attract electrons from iron. This creates iron ions (Fe2+), which are soluble in water. Once dissolved in water, iron ions react with dissolved atmospheric oxygen (O2) to create iron oxide, or rust.
Acids can come from a variety of sources. For example, when carbon dioxide in the atmosphere dissolves in water, carbonic acid (H2CO3) is created. Carbonic acid is the most common cause of rusting. However, other environmental sources of acids exist. Rainwater is normally slightly acidic because it has come into contact with molecules in the atmosphere, like sulfur dioxide and nitrogen oxides. These molecules also dissolve in water to form acids. Additionally, iron itself may contain impurities such as phosphorous and sulfur, which react with water to produce acids. Both acidic environments and impurities within iron itself create the conditions under which iron rusts.
Rusting can be prevented by painting the surface of iron, thus preventing it from coming into contact with water, oxygen, and acids. Iron can also be protected in a process called "galvanizing," which involves coating iron in a thin layer of zinc. Because zinc is more reactive than iron, it is corroded while the iron is protected.
An iron nail is placed in a flask of water, which has been boiled to release any dissolved oxygen. The flask is attached to a vacuum pump which removes the air inside it. Then the flask is sealed. Assuming that the explanation of Scientist 1 is correct, which of the following results will be observed?
No hydrated iron oxide will form on the surface of the iron.
Oxygen will build up inside the flask.
Hydroxide ions will be produced in the solution.
Hydrated iron oxide will form on the surface of the iron.
Iron hydroxide will be produced, but will not be converted to iron oxide.
No hydrated iron oxide will form on the surface of the iron.
Scientist 1 states that for rust (hydrated iron oxide) to form, oxygen must dissolve in water and to react with water to form hydroxide ions. However, in this question, the vacuum pump removes all the air (including oxygen) in the flask. So, no oxygen would be able to react to produce hydroxide ions—meaning that no iron hydroxide will be produced, and no rust will be produced either.
Example Question #852 : Act Science
In its refined form, iron is a shiny, silver-gray metal; however, when refined iron is exposed to atmospheric conditions for an extended period of time, its surface becomes flaky, pitted, and red- or orange-colored. This process is known as "rusting," and the new flaky, orange or red substance is called "rust."
Below, two scientists discuss how rust forms and the composition of rust.
Scientist 1:
Both water and oxygen are needed for rust to form. Water is an electrolyte, meaning that it allows ions to move within it. When iron comes into contact with water, some iron naturally dissociates into iron ions (Fe2+) and free electrons. Additionally, when atmospheric oxygen (O2) dissolves in water, some oxygen reacts with water to form hydroxide ions (OH-). Because water allows ions to move freely, iron ions and hydroxide ions combine to form a new compound: iron hydroxide. However, iron hydroxide is not a stable compound. Over time, as water evaporates, it changes into a hydrated form of iron oxide. This is rust.
Salts can act as catalysts for rust formation, meaning that they speed up the rate at which rust forms. However, rust can form in pure water, in the absence of added salts.
Increasing the ambient temperature increases the rate of rust formation. Additionally, increasing the amount of iron's surface area that is exposed to water also increases the rate at which rust forms. However, because a layer of rust is porous to water and oxygen, water and oxygen will continue to cause the interior of a piece of iron to rust even after the iron's surface has been rusted.
Scientist 2:
Attack by acids causes rust to form. In water, acids ionize to create positively-charged hydronium (H+) ions and negatively-charged anions. Hydronium ions are electron-deficient; because of this, they attract electrons from iron. This creates iron ions (Fe2+), which are soluble in water. Once dissolved in water, iron ions react with dissolved atmospheric oxygen (O2) to create iron oxide, or rust.
Acids can come from a variety of sources. For example, when carbon dioxide in the atmosphere dissolves in water, carbonic acid (H2CO3) is created. Carbonic acid is the most common cause of rusting. However, other environmental sources of acids exist. Rainwater is normally slightly acidic because it has come into contact with molecules in the atmosphere, like sulfur dioxide and nitrogen oxides. These molecules also dissolve in water to form acids. Additionally, iron itself may contain impurities such as phosphorous and sulfur, which react with water to produce acids. Both acidic environments and impurities within iron itself create the conditions under which iron rusts.
Rusting can be prevented by painting the surface of iron, thus preventing it from coming into contact with water, oxygen, and acids. Iron can also be protected in a process called "galvanizing," which involves coating iron in a thin layer of zinc. Because zinc is more reactive than iron, it is corroded while the iron is protected.
An iron nail is placed in a test tube filled with water. Then, a layer of oil is poured over the water. After an extended period of time, no rust is observed to have formed on the iron nail. Scientist 1 would most likely explain this result by saying that:
The layer of oil prevented atmospheric oxygen from dissolving in the water, reducing the production of OH- ions.
The layer of oil allowed atmospheric oxygen to dissolve in the water, reducing the production of OH- ions.
The layer of oil allowed atmospheric oxygen to dissolve in the water, increasing the production of OH- ions.
The layer of oil prevented atmospheric oxygen from dissolving in the water, increasing the production of OH- ions.
The layer of oil prevented atmospheric oxygen from dissolving in the water, reducing the production of OH- ions.
Scientist 1 states that for rust to form, oxygen must dissolve in water and react with water to form hydroxide (OH-) ions. In this case, no rust is observed to form. This suggests that the layer of oil blocked the diffusion of oxygen into the water, preventing the production of OH- ions—and thus, of rust.
Example Question #852 : Act Science
In its refined form, iron is a shiny, silver-gray metal; however, when refined iron is exposed to atmospheric conditions for an extended period of time, its surface becomes flaky, pitted, and red- or orange-colored. This process is known as "rusting," and the new flaky, orange or red substance is called "rust."
Below, two scientists discuss how rust forms and the composition of rust.
Scientist 1:
Both water and oxygen are needed for rust to form. Water is an electrolyte, meaning that it allows ions to move within it. When iron comes into contact with water, some iron naturally dissociates into iron ions (Fe2+) and free electrons. Additionally, when atmospheric oxygen (O2) dissolves in water, some oxygen reacts with water to form hydroxide ions (OH-). Because water allows ions to move freely, iron ions and hydroxide ions combine to form a new compound: iron hydroxide. However, iron hydroxide is not a stable compound. Over time, as water evaporates, it changes into a hydrated form of iron oxide. This is rust.
Salts can act as catalysts for rust formation, meaning that they speed up the rate at which rust forms. However, rust can form in pure water, in the absence of added salts.
Increasing the ambient temperature increases the rate of rust formation. Additionally, increasing the amount of iron's surface area that is exposed to water also increases the rate at which rust forms. However, because a layer of rust is porous to water and oxygen, water and oxygen will continue to cause the interior of a piece of iron to rust even after the iron's surface has been rusted.
Scientist 2:
Attack by acids causes rust to form. In water, acids ionize to create positively-charged hydronium (H+) ions and negatively-charged anions. Hydronium ions are electron-deficient; because of this, they attract electrons from iron. This creates iron ions (Fe2+), which are soluble in water. Once dissolved in water, iron ions react with dissolved atmospheric oxygen (O2) to create iron oxide, or rust.
Acids can come from a variety of sources. For example, when carbon dioxide in the atmosphere dissolves in water, carbonic acid (H2CO3) is created. Carbonic acid is the most common cause of rusting. However, other environmental sources of acids exist. Rainwater is normally slightly acidic because it has come into contact with molecules in the atmosphere, like sulfur dioxide and nitrogen oxides. These molecules also dissolve in water to form acids. Additionally, iron itself may contain impurities such as phosphorous and sulfur, which react with water to produce acids. Both acidic environments and impurities within iron itself create the conditions under which iron rusts.
Rusting can be prevented by painting the surface of iron, thus preventing it from coming into contact with water, oxygen, and acids. Iron can also be protected in a process called "galvanizing," which involves coating iron in a thin layer of zinc. Because zinc is more reactive than iron, it is corroded while the iron is protected.
Given that all of the following are true, which of the following, if found, provides the strongest evidence against Scientist 1's hypothesis?
In the absence of liquid water, iron does not rust.
When table salt is dissolved in water, the water is better able to conduct an electrical current.
When the concentration of dissolved oxygen in a solution is increased, rust forms more quickly on iron in the solution.
When the concentration of hydroxide ions in a solution is increased, rust forms less quickly on iron in the solution.
When table salt is dissolved in water, the rate at which Fe2+ ions are produced increases.
When the concentration of hydroxide ions in a solution is increased, rust forms less quickly on iron in the solution.
According to Scientist 1, the production of hydroxide ions is needed in order for rust to form. Scientist 1 states that hydroxide ions combine with soluble iron ions to form iron hydroxide, which then changes into hydrated iron oxide, or rust. Since hydroxide ions are one of the reactants used to produce rust, increasing the concentration of hydroxide ions in a solution should speed up the formation of rust. However, if increasing the hydroxide concentration actually slows down the formation of rust, this would suggest that Scientist 1's explanation is incorrect.
Certified Tutor