All ACT Math Resources
Example Questions
Example Question #1 : How To Find The Length Of The Side Of An Acute / Obtuse Triangle
A triangle has a perimeter of 36 inches, and one side that is 12 inches long. The lengths of the other two sides have a ratio of 3:5. What is the length of the longest side of the triangle?
9
14
12
15
8
15
We know that the perimeter is 36 inches, and one side is 12. This means, the sum of the lengths of the other two sides are 24. The ratio between the two sides is 3:5, giving a total of 8 parts. We divide the remaining length, 24 inches, by 8 giving us 3. This means each part is 3. We multiply this by the ratio and get 9:15, meaning the longest side is 15 inches.
Example Question #2 : How To Find The Length Of The Side Of An Acute / Obtuse Triangle
What is the value of in the triangle above? Round to the nearest hundredth.
Cannot be computed
What is the value of in the triangle above? Round to the nearest hundredth.
Begin by filling in the missing angle for your triangle. Since a triangle has a total of degrees, you know that the missing angle is:
Draw out the figure:
Now, to solve this, you will need some trigonometry. Use the Law of Sines to calculate the value:
Solving for , you get:
Rounding, this is .
Example Question #3 : How To Find The Length Of The Side Of An Acute / Obtuse Triangle
What is the value of in the triangle above? Round to the nearest hundredth.
Cannot be computed
Begin by filling in the missing angle for your triangle. Since a triangle has a total of degrees, you know that the missing angle is:
Draw out the figure:
Now, to solve this, you will need some trigonometry. Use the Law of Sines to calculate the value:
Solving for , you get:
Rounding, this is .
Example Question #1 : How To Find The Length Of The Side Of An Acute / Obtuse Triangle
What is the length of side ? Round to the nearest hundredth.
Cannot be computed
Begin by filling in the missing angle for your triangle. Since a triangle has a total of degrees, you know that the missing angle is:
Draw out the figure:
This problem becomes incredibly easy! This is an isosceles triangle. Therefore, you know that is , because it is "across" from a degree angle—which matches the other degree angle!
Example Question #1 : 45/45/90 Right Isosceles Triangles
The area of an isosceles right triangle is . What is its height that is correlative and perpendicular to a side that is not the hypotenuse?
Recall that an isosceles right triangle is a triangle. That means that it looks like this:
This makes calculating the area very easy! Recall, the area of a triangle is defined as:
However, since for our triangle, we know:
Now, we know that . Therefore, we can write:
Solving for , we get:
This is the length of the height of the triangle for the side that is not the hypotenuse.
Example Question #2 : 45/45/90 Right Isosceles Triangles
What is the area of an isosceles right triangle that has an hypotenuse of length ?
Based on the information given, you know that your triangle looks as follows:
This is a triangle. Recall your standard triangle:
You can set up the following ratio between these two figures:
Now, the area of the triangle will merely be (since both the base and the height are ). For your data, this is:
Example Question #1 : 45/45/90 Right Isosceles Triangles
Find the height of an isoceles right triangle whose hypotenuse is
To solve simply realize the hypotenuse of one of these triangles is of the form where s is side length. Thus, our answer is .
Example Question #1 : How To Find The Height Of A 45/45/90 Right Isosceles Triangle
The area of an isosceles right triangle is . What is its height that is correlative and perpendicular to this triangle's hypotenuse?
Recall that an isosceles right triangle is a triangle. That means that it looks like this:
This makes calculating the area very easy! Recall, the area of a triangle is defined as:
However, since for our triangle, we know:
Now, we know that . Therefore, we can write:
Solving for , we get:
However, be careful! Notice what the question asks: "What is its height that is correlative and perpendicular to this triangle's hypotenuse?" First, let's find the hypotenuse of the triangle. Recall your standard triangle:
Since one of your sides is , your hypotenuse is .
Okay, what you are actually looking for is in the following figure:
Therefore, since you know the area, you can say:
Solving, you get: .
Example Question #1 : 45/45/90 Right Isosceles Triangles
What is the area of an isosceles right triangle with a hypotenuse of ?
Now, this is really your standard triangle. Since it is a right triangle, you know that you have at least one -degree angle. The other two angles must each be degrees, because the triangle is isosceles.
Based on the description of your triangle, you can draw the following figure:
This is derived from your reference triangle for the triangle:
For our triangle, we could call one of the legs . We know, then:
Thus, .
The area of your triangle is:
For your data, this is:
Example Question #1 : Isosceles Triangles
What is the area of an isosceles right triangle with a hypotenuse of ?
Now, this is really your standard triangle. Since it is a right triangle, you know that you have at least one -degree angle. The other two angles must each be degrees because the triangle is isosceles.
Based on the description of your triangle, you can draw the following figure:
This is derived from your reference triangle for the triangle:
For our triangle, we could call one of the legs . We know, then:
Thus, .
The area of your triangle is:
For your data, this is:
Certified Tutor