ACT Math : Triangles

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #2 : 45/45/90 Right Isosceles Triangles

What is the area of an isosceles right triangle with a hypotenuse of ?

Possible Answers:

Correct answer:

Explanation:

Now, this is really your standard  triangle. Since it is a right triangle, you know that you have at least one -degree angle. The other two angles must each be  degrees because the triangle is isosceles.

Based on the description of your triangle, you can draw the following figure:

_tri121

This is derived from your reference triangle for the  triangle:

Triangle454590

For our triangle, we could call one of the legs . We know, then:

Thus, .

The area of your triangle is:

For your data, this is:

Example Question #4 : How To Find The Area Of A 45/45/90 Right Isosceles Triangle

 is a right isosceles triangle with hypotenuse . What is the area of ?

Possible Answers:

Correct answer:

Explanation:

Right isosceles triangles (also called "45-45-90 right triangles") are special shapes. In a plane, they are exactly half of a square, and their sides can therefore be expressed as a ratio equal to the sides of a square and the square's diagonal:

, where  is the hypotenuse.

In this case,  maps to , so to find the length of a side (so we can use the triangle area formula), just divide the hypotenuse by :

So, each side of the triangle is  long. Now, just follow your formula for area of a triangle:

Thus, the triangle has an area of .

Example Question #141 : Triangles

What is the perimeter of an isosceles right triangle with an hypotenuse of length ?

Possible Answers:

Correct answer:

Explanation:

Your right triangle is a  triangle. It thus looks like this:

_tri41

Now, you know that you also have a reference triangle for  triangles. This is:

Triangle454590

This means that you can set up a ratio to find . It would be:

Your triangle thus could be drawn like this:

_tri42

Now, notice that you can rationalize the denominator of :

Thus, the perimeter of your figure is:

Example Question #2 : How To Find The Perimeter Of A 45/45/90 Right Isosceles Triangle

What is the perimeter of an isosceles right triangle with an area of ?

Possible Answers:

Correct answer:

Explanation:

Recall that an isosceles right triangle is also a  triangle. Your reference figure for such a shape is:



Triangle454590 or _tri51

Now, you know that the area of a triangle is:

For this triangle, though, the base and height are the same. So it is:

Now, we have to be careful, given that our area contains . Let's use , for "side length":

Thus, . Now based on the reference figure above, you can easily see that your triangle is:

_tri71

Therefore, your perimeter is:

Example Question #202 : Plane Geometry

A tree is  feet tall and is planted in the center of a circular bed with a radius of  feet. If you want to stabalize the tree with ropes going from its midpoint to the border of the bed, how long will each rope measure?

Possible Answers:

Correct answer:

Explanation:

This is a right triangle where the rope is the hypotenuse. One leg is the radius of the circle, 5 feet. The other leg is half of the tree's height, 12 feet. We can now use the Pythagorean Theorem  giving us . If  then .

Example Question #141 : Triangles

An isosceles right triangle has a hypotenuse of length . What is the perimeter of this triangle, in terms of ?

Possible Answers:

Correct answer:

Explanation:

The ratio of sides to hypotenuse of an isosceles right triangle is always . With this in mind, setting  as our hypotenuse means we must have leg lengths equal to:

Since the perimeter has two of these legs, we just need to multiply this by  and add the result to our hypothesis:

So, our perimeter in terms of  is: 

Example Question #1 : How To Find The Length Of The Side Of A 45/45/90 Right Isosceles Triangle

A 44/45/90 triangle has a hypotenuse of . Find the length of one of its legs. 

Possible Answers:

Cannot be determined

Correct answer:

Explanation:

It's helpful to remember upon coming across a 45/45/90 triangle that it's a special right triangle. This means that its sides can easily be calculated by using a derived side ratio:

Here,  represents the length of one of the legs of the 45/45/90 triangle, and  represents the length of the triangle's hypotenuse. Two sides are denoted as congruent lengths () because this special triangle is actually an isosceles triangle. This goes back to the fact that two of its angles are congruent. 

Therefore, using the side rules mentioned above, if , this problem can be resolved by solving for the value of :

Therefore, the length of one of the legs is 1.

Example Question #2 : How To Find The Length Of The Side Of A 45/45/90 Right Isosceles Triangle

In a 45-45-90 triangle, if the hypothenuse is  long, what is a possible side length?

Possible Answers:

Correct answer:

Explanation:

If the hypotenuse of a 45-45-90 triangle is provided, its side length can only be one length, since the sides of all 45-45-90 triangles exist in a defined ratio of , where  represents the length of one of the triangle's legs and  represents the length of the triangle's hypotenuse. Using this method, you can set up a proportion and solve for the length of one of the triangle's sides:

Cross-multiply and solve for .

Rationalize the denominator.

 

You can also solve this problem using the Pythagorean Theorem.

In a 45-45-90 triangle, the side legs will be equal, so . Substitute  for  and rewrite the formula.

Substitute the provided length of the hypothenuse and solve for .

While the answer looks a little different from the result of our first method of solving this problem, the two represent the same value, just written in different ways.

Example Question #1 : How To Find The Length Of The Side Of A 45/45/90 Right Isosceles Triangle

In a  triangle, if the length of the hypotenuse is , what is the perimeter?

Possible Answers:

Correct answer:

Explanation:

1. Remember that this is a special right triangle where the ratio of the sides is:

In this case that makes it:

 

2. Find the perimeter by adding the side lengths together:

Example Question #4 : How To Find The Length Of The Side Of A 45/45/90 Right Isosceles Triangle

The height of a  triangle is . What is the length of the hypotenuse?

Possible Answers:

Correct answer:

Explanation:

Remember that this is a special right triangle where the ratio of the sides is:

In this case that makes it:

Where    is the length of the hypotenuse.

Learning Tools by Varsity Tutors