All ACT Math Resources
Example Questions
Example Question #2 : 45/45/90 Right Isosceles Triangles
What is the area of an isosceles right triangle with a hypotenuse of ?
Now, this is really your standard triangle. Since it is a right triangle, you know that you have at least one -degree angle. The other two angles must each be degrees because the triangle is isosceles.
Based on the description of your triangle, you can draw the following figure:
This is derived from your reference triangle for the triangle:
For our triangle, we could call one of the legs . We know, then:
Thus, .
The area of your triangle is:
For your data, this is:
Example Question #4 : How To Find The Area Of A 45/45/90 Right Isosceles Triangle
is a right isosceles triangle with hypotenuse . What is the area of ?
Right isosceles triangles (also called "45-45-90 right triangles") are special shapes. In a plane, they are exactly half of a square, and their sides can therefore be expressed as a ratio equal to the sides of a square and the square's diagonal:
, where is the hypotenuse.
In this case, maps to , so to find the length of a side (so we can use the triangle area formula), just divide the hypotenuse by :
So, each side of the triangle is long. Now, just follow your formula for area of a triangle:
Thus, the triangle has an area of .
Example Question #141 : Triangles
What is the perimeter of an isosceles right triangle with an hypotenuse of length ?
Your right triangle is a triangle. It thus looks like this:
Now, you know that you also have a reference triangle for triangles. This is:
This means that you can set up a ratio to find . It would be:
Your triangle thus could be drawn like this:
Now, notice that you can rationalize the denominator of :
Thus, the perimeter of your figure is:
Example Question #2 : How To Find The Perimeter Of A 45/45/90 Right Isosceles Triangle
What is the perimeter of an isosceles right triangle with an area of ?
Recall that an isosceles right triangle is also a triangle. Your reference figure for such a shape is:
or
Now, you know that the area of a triangle is:
For this triangle, though, the base and height are the same. So it is:
Now, we have to be careful, given that our area contains . Let's use , for "side length":
Thus, . Now based on the reference figure above, you can easily see that your triangle is:
Therefore, your perimeter is:
Example Question #202 : Plane Geometry
A tree is feet tall and is planted in the center of a circular bed with a radius of feet. If you want to stabalize the tree with ropes going from its midpoint to the border of the bed, how long will each rope measure?
This is a right triangle where the rope is the hypotenuse. One leg is the radius of the circle, 5 feet. The other leg is half of the tree's height, 12 feet. We can now use the Pythagorean Theorem giving us . If then .
Example Question #141 : Triangles
An isosceles right triangle has a hypotenuse of length . What is the perimeter of this triangle, in terms of ?
The ratio of sides to hypotenuse of an isosceles right triangle is always . With this in mind, setting as our hypotenuse means we must have leg lengths equal to:
Since the perimeter has two of these legs, we just need to multiply this by and add the result to our hypothesis:
So, our perimeter in terms of is:
Example Question #1 : How To Find The Length Of The Side Of A 45/45/90 Right Isosceles Triangle
A 44/45/90 triangle has a hypotenuse of . Find the length of one of its legs.
Cannot be determined
It's helpful to remember upon coming across a 45/45/90 triangle that it's a special right triangle. This means that its sides can easily be calculated by using a derived side ratio:
Here, represents the length of one of the legs of the 45/45/90 triangle, and represents the length of the triangle's hypotenuse. Two sides are denoted as congruent lengths () because this special triangle is actually an isosceles triangle. This goes back to the fact that two of its angles are congruent.
Therefore, using the side rules mentioned above, if , this problem can be resolved by solving for the value of :
Therefore, the length of one of the legs is 1.
Example Question #2 : How To Find The Length Of The Side Of A 45/45/90 Right Isosceles Triangle
In a 45-45-90 triangle, if the hypothenuse is long, what is a possible side length?
If the hypotenuse of a 45-45-90 triangle is provided, its side length can only be one length, since the sides of all 45-45-90 triangles exist in a defined ratio of , where represents the length of one of the triangle's legs and represents the length of the triangle's hypotenuse. Using this method, you can set up a proportion and solve for the length of one of the triangle's sides:
Cross-multiply and solve for .
Rationalize the denominator.
You can also solve this problem using the Pythagorean Theorem.
In a 45-45-90 triangle, the side legs will be equal, so . Substitute for and rewrite the formula.
Substitute the provided length of the hypothenuse and solve for .
While the answer looks a little different from the result of our first method of solving this problem, the two represent the same value, just written in different ways.
Example Question #1 : How To Find The Length Of The Side Of A 45/45/90 Right Isosceles Triangle
In a triangle, if the length of the hypotenuse is , what is the perimeter?
1. Remember that this is a special right triangle where the ratio of the sides is:
In this case that makes it:
2. Find the perimeter by adding the side lengths together:
Example Question #4 : How To Find The Length Of The Side Of A 45/45/90 Right Isosceles Triangle
The height of a triangle is . What is the length of the hypotenuse?
Remember that this is a special right triangle where the ratio of the sides is:
In this case that makes it:
Where is the length of the hypotenuse.