SSAT Upper Level Math : SSAT Upper Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #12 : How To Graph Complex Numbers

Add \displaystyle 4+ 7i to its complex conjugate. What is the result?

Possible Answers:

\displaystyle 14i

\displaystyle 0

\displaystyle 11-3i

\displaystyle 11 + 11i

\displaystyle 8

Correct answer:

\displaystyle 8

Explanation:

The complex conjugate of a complex number \displaystyle a + bi is \displaystyle a - bi, so \displaystyle 4+7i has \displaystyle 4-7i as its complex conjugate; the sum of the two numbers is

\displaystyle (4+7i)+ (4-7i) = 4+4 + 7i - 7i = 8

Example Question #13 : How To Graph Complex Numbers

Multiply the complex conjugate of \displaystyle 3 + 7i by \displaystyle 4i. What is the result?

Possible Answers:

\displaystyle 28 + 12i

\displaystyle -12 + 28i

\displaystyle -28+12i

\displaystyle 12 + 28 i

\displaystyle 12 - 28 i

Correct answer:

\displaystyle 28 + 12i

Explanation:

The complex conjugate of a complex number \displaystyle a + bi is \displaystyle a - bi, so the complex conjugate of \displaystyle 3 + 7i is \displaystyle 3 - 7i. Multiply this by \displaystyle 4i:

\displaystyle (3-7i) \cdot 4i = 3 \cdot 4i - 7 i \cdot 4i

\displaystyle = 12i - 7 \cdot 4 \cdot i \cdot i

\displaystyle = 12i -28 \cdot (-1)

\displaystyle = 12i + 28

\displaystyle = 28 + 12i

Example Question #631 : Ssat Upper Level Quantitative (Math)

Multiply the complex conjugate of 8 by \displaystyle 5 i. What is the result?

Possible Answers:

None of the other responses gives the correct product.

\displaystyle 40i

\displaystyle -40i

\displaystyle 40

\displaystyle -40

Correct answer:

\displaystyle 40i

Explanation:

The complex conjugate of a complex number \displaystyle a + bi is \displaystyle a - bi. Since \displaystyle 8=8+0i, its complex conjugate is \displaystyle 8-0i = 8 itself. Multiply this by \displaystyle 5i:

\displaystyle 8 \cdot 5i = 40 i

Example Question #92 : Graphing

Multiply the complex conjugate of \displaystyle 7i by \displaystyle 3 i. What is the result?

Possible Answers:

\displaystyle -21i

None of the other responses gives the correct product.

\displaystyle -21

\displaystyle 21i

\displaystyle 21

Correct answer:

\displaystyle 21

Explanation:

The complex conjugate of a complex number \displaystyle a + bi is \displaystyle a - bi. Since \displaystyle 7i = 0+7i, its complex conjugate is \displaystyle 0-7i = -7i.

Multiply this by \displaystyle 3i:

Recall that by definition \displaystyle i^2=-1.

\displaystyle -7i \cdot 3i = -7 \cdot 3 \cdot i \cdot i = -21 (-1) = 21

Example Question #411 : Geometry

Multiply the following complex numbers:

\displaystyle \left (5 + i \right )\left (5 + 2i \right )

Possible Answers:

\displaystyle 23 - 15i

\displaystyle 23 + 5i

\displaystyle 27 - 15i

\displaystyle 27 + 5i

\displaystyle 23 + 15i

Correct answer:

\displaystyle 23 + 15i

Explanation:

FOIL the product out:

\displaystyle \left (5 + i \right )\left (5 + 2i \right )

To FOIL multiply the first terms from each binomial together, multiply the outer terms of both terms together, multiply the inner terms from both binomials together, and finally multiply the last terms from each binomial together.

\displaystyle =5 \cdot 5 + 5 \cdot 2i + 5 \cdot i + i\cdot 2i

\displaystyle =25 + 10i + 5 i + 2i^{2}

Recall that i is an imaginary number and by definition \displaystyle i^2=-1. Substituting this into the function is as follows.

\displaystyle =25 + 10i + 5 i + 2 (-1)

\displaystyle =25 -2 + 10i + 5 i

\displaystyle =23 + 15i

Example Question #1 : How To Graph Inverse Variation

Give the equation of the vertical asymptote of the graph of the equation \displaystyle y = \frac{7}{9x+4}.

Possible Answers:

\displaystyle x= \frac{7}{9}

\displaystyle x= - \frac{7}{4}

\displaystyle x = 9

\displaystyle x= -\frac{4}{9}

\displaystyle x=-4

Correct answer:

\displaystyle x= -\frac{4}{9}

Explanation:

The vertical asymptote of an inverse variation function is the vertical line of the equation \displaystyle x = a, where \displaystyle a is the value for which the expression is not defined. To find \displaystyle a, set the denominator to \displaystyle 0 and solve for \displaystyle x:

\displaystyle 9x+4 = 0

\displaystyle 9x= -4

\displaystyle x= -\frac{4}{9} is the equation of the asymptote.

 

Example Question #1 : How To Graph Inverse Variation

Give the \displaystyle x-intercept of the graph of the equation \displaystyle y = \frac{5}{2x-7}.

Possible Answers:

\displaystyle \left ( \frac{5}{2}, 0 \right )

\displaystyle (5,0)

\displaystyle (7,0)

The graph has no \displaystyle x-intercept.

\displaystyle \left ( \frac{7}{2}, 0 \right )

Correct answer:

The graph has no \displaystyle x-intercept.

Explanation:

The \displaystyle x-intercept of the graph of an equation is the point at which it intersects the \displaystyle y-axis. Its \displaystyle y-coordinate is 0, so set \displaystyle y = 0 and solve for \displaystyle x:

\displaystyle y = \frac{5}{2x-7}

\displaystyle 0= \frac{5}{2x-7}

\displaystyle 0\cdot (2x-7) = \frac{5}{2x-7} \cdot (2x-7)

\displaystyle 0 = 5

This is identically false, so the graph has no \displaystyle x-intercept.

Example Question #3 : How To Graph Inverse Variation

Give the \displaystyle y-intercept of the graph of the equation \displaystyle y = \frac{3}{5x-8}.

Possible Answers:

\displaystyle \left ( 0, -\frac{3}{5}\right )

The graph has no \displaystyle y-intercept.

\displaystyle \left ( 0, \frac{8}{5}\right )

\displaystyle \left ( 0, -\frac{3}{8}\right )

\displaystyle (0,8)

Correct answer:

\displaystyle \left ( 0, -\frac{3}{8}\right )

Explanation:

The \displaystyle y-intercept of the graph of an equation is the point at which it intersects the \displaystyle x-axis. Its \displaystyle x-coordinate is 0, so set \displaystyle x = 0 and solve for \displaystyle y:

\displaystyle y = \frac{3}{5x-8}

\displaystyle y = \frac{3}{5 (0)-8}

\displaystyle y = \frac{3}{0-8}

\displaystyle y =- \frac{3}{8}

\displaystyle \left ( 0, -\frac{3}{8}\right ) is the \displaystyle y-intercept.

Example Question #1 : How To Graph Inverse Variation

Give the slope of the line that passes through the \displaystyle x- and \displaystyle y-intercepts of the graph of the equation  \displaystyle y = \frac{6}{8x-2}

Possible Answers:

\displaystyle -\frac{1}{3}

\displaystyle -3

The line cannot exist as described.

\displaystyle \frac{4}{3}

\displaystyle \frac{3}{4}

Correct answer:

The line cannot exist as described.

Explanation:

The graph of \displaystyle y = \frac{6}{8x-2} does not have an \displaystyle x-intercept. If it did, then it would be the point on the graph with \displaystyle y-coordinate 0. If we were to make this substitution, the equation would be

\displaystyle 0= \frac{6}{8x-2}

and 

\displaystyle 0 \cdot (8x-2)= \frac{6}{8x-2} \cdot (8x-2)

\displaystyle 0=6

This is identically false, so the graph has no \displaystyle x-intercept. Therefore, the line cannot exist as described.

Example Question #5 : How To Graph Inverse Variation

Give the \displaystyle y-coordinate of a point with a positive \displaystyle x-coordinate at which the graphs of the equations \displaystyle y = \frac{4}{x} and \displaystyle x+3y = 4 intersect.

Possible Answers:

\displaystyle \frac{2}{3}

\displaystyle \frac{4}{3}

\displaystyle 2

\displaystyle 1

The graphs of the equations do not intersect.

Correct answer:

The graphs of the equations do not intersect.

Explanation:

Substitute \displaystyle \frac{4}{x} for \displaystyle y in the second equation:

\displaystyle x+3\cdot \frac{4}{x} = 4

\displaystyle x+ \frac{12}{x} = 4

\displaystyle x+ \frac{12}{x}- 4 = 4 - 4

\displaystyle x- 4 + \frac{12}{x}= 0

\displaystyle \left (x- 4 + \frac{12}{x} \right )\cdot x = 0 \cdot x

\displaystyle x^{2}- 4 x + 12 = 0

The discriminant of this quadratic expression is \displaystyle b^{2} - 4ac, where \displaystyle a=1, b= -4, c=12; this is

\displaystyle b^{2} - 4ac = (-4)^{2}-4 \cdot 1 \cdot 12 = 16 -48 = -32.

The discriminant being negative, there are no real solutions to this quadratic equation. Consequently, there are no points of intersection of the graphs of the two equations on the coordinate plane.

Learning Tools by Varsity Tutors