SSAT Middle Level Math : Numbers and Operations

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #14 : How To Subtract Fractions

The time is now 1:32 PM. What time was it three hours and seventeen minutes ago?

Possible Answers:

\displaystyle 10:05\textrm{ AM}

\displaystyle 10:15\textrm{ AM}

\displaystyle 11:15\textrm{ AM}

The correct answer is not given among the other choices.

\displaystyle 11:05 \textrm{ AM}

Correct answer:

\displaystyle 10:15\textrm{ AM}

Explanation:

One hour and thirty-two minutes have elapsed since midnight. Since three hours and seventeen minutes make a greater quantity, we need to look at this as thirteen hours and thirty-two minutes having elapsed since noon. 

We can subtract hours, then subtract minutes:

 \displaystyle 13\textrm{ hr }32\textrm{ min}

\displaystyle \underline{- 3\textrm{ hr }17\textrm{ min}}

 \displaystyle 10 \textrm{ hr }15 \textrm{ min}

The time was 10:15 AM.

Example Question #13 : How To Subtract Fractions

Which of the following is the difference of seven tenths and seventeen hundredths?

Possible Answers:

\displaystyle 0.53

\displaystyle 0.6983

\displaystyle 0.683

\displaystyle 0.053

\displaystyle 0.5983

Correct answer:

\displaystyle 0.53

Explanation:

Seven tenths is equal to 0.7; seventeen hundredths is equal to 0.17. Subtract them, rewriting 0.7 as 0.70;

     \displaystyle 0.70

\displaystyle \underline{- \; 0.17 }

     \displaystyle 0.53

Example Question #3052 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

\displaystyle \frac{3}{4}-\frac{2}{3}

Possible Answers:

\displaystyle \frac{1}{2}

\displaystyle \frac{1}{0}

\displaystyle \frac{1}{24}

\displaystyle \frac{1}{1}

\displaystyle \frac{1}{12}

Correct answer:

\displaystyle \frac{1}{12}

Explanation:

\displaystyle \frac{3}{4}-\frac{2}{3}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{3}{4}\times\frac{3}{3}=\frac{9}{12}

\displaystyle \frac{2}{3\time}\times\frac{4}{4}=\frac{8}{12}

Now that we have common denominators, we can subtract the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{9}{12}-\frac{8}{12}=\frac{1}{12}

Example Question #51 : How To Subtract Fractions

\displaystyle \frac{8}{12}-\frac{1}4{}

Possible Answers:

\displaystyle \frac{7}{8}

\displaystyle \frac{7}{16}

\displaystyle \frac{5}{12}

\displaystyle \frac{5}{0}

\displaystyle \frac{3}{4}

Correct answer:

\displaystyle \frac{5}{12}

Explanation:

\displaystyle \frac{8}{12}-\frac{1}4{}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{1}{4}\times\frac{3}{3}=\frac{3}{12}

Now that we have common denominators, we can subtract the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{8}{12}-\frac{3}{12}=\frac{5}{12}

Example Question #14 : How To Subtract Fractions

Solve:

\displaystyle \frac{2}{3}-\frac{3}{5}

 

Possible Answers:

\displaystyle \frac{1}{15}

\displaystyle \frac{5}{15}

\displaystyle \frac{1}{3}

\displaystyle \frac{1}{30}

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle \frac{1}{15}

Explanation:

\displaystyle \frac{2}{3}-\frac{3}{5}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{2}{3}\times\frac{5}{5}=\frac{10}{15}

\displaystyle \frac{3}{5}\times \frac{3}{3}=\frac{9}{15}

Now that we have common denominators, we can subtract the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{10}{15}-\frac{9}{15}=\frac{1}{15}

Example Question #151 : Numbers And Operations

Solve:

\displaystyle \frac{7}{8}-\frac{3}{16}

Possible Answers:

\displaystyle \frac{1}{4}

\displaystyle \frac{4}{16}

\displaystyle \frac{13}{16}

\displaystyle \frac{4}{8}

\displaystyle \frac{11}{16}

Correct answer:

\displaystyle \frac{11}{16}

Explanation:

\displaystyle \frac{7}{8}-\frac{3}{16}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{7}{8}\times\frac{2}{2}=\frac{14}{16}

Now that we have common denominators, we can subtract the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{14}{16}-\frac{3}{16}=\frac{11}{16}

Example Question #145 : Operations With Fractions And Whole Numbers

\displaystyle \frac{5}{6}-\frac{1}{4}

Possible Answers:

\displaystyle \frac{3}{4}

\displaystyle \frac{4}{2}

\displaystyle \frac{7}{12}

\displaystyle \frac{8}{13}

\displaystyle \frac{7}{0}

Correct answer:

\displaystyle \frac{7}{12}

Explanation:

\displaystyle \frac{5}{6}-\frac{1}{4}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{5}{6}\times\frac{2}{2}=\frac{10}{12}

\displaystyle \frac{1}{4}\times\frac{3}{3}=\frac{3}{12}

Now that we have common denominators, we can subtract the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{10}{12}-\frac{3}{12}=\frac{7}{12}

Example Question #146 : Operations With Fractions And Whole Numbers

\displaystyle \frac{9}{10}-\frac{3}{5}

Possible Answers:

\displaystyle \frac{3}{0}

\displaystyle \frac{3}{4}

\displaystyle \frac{5}{7}

\displaystyle \frac{6}{5}

\displaystyle \frac{3}{10}

Correct answer:

\displaystyle \frac{3}{10}

Explanation:

\displaystyle \frac{9}{10}-\frac{3}{5}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{3}{5}\times\frac{2}{2}=\frac{6}{10}

Now that we have common denominators, we can subtract the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{9}{10}-\frac{6}{10}=\frac{3}{10}

Example Question #374 : Fractions

\displaystyle \frac{1}{2}-\frac{1}{3}

Possible Answers:

\displaystyle \frac{2}{6}

\displaystyle \frac{1}{2}

\displaystyle \frac{0}{6}

\displaystyle \frac{3}{4}

\displaystyle \frac{1}{6}

Correct answer:

\displaystyle \frac{1}{6}

Explanation:

\displaystyle \frac{1}{2}-\frac{1}{3}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{1}{2}\times\frac{3}{3}=\frac{3}{6}

\displaystyle \frac{1}{3}\times\frac{2}{2}=\frac{2}{6}

Now that we have common denominators, we can subtract the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{3}{6}-\frac{2}{6}=\frac{1}{6}

Example Question #1 : Subtract Fractions With Unlike Denominators

\displaystyle \frac{3}{4}-\frac{5}{8}

Possible Answers:

\displaystyle \frac{1}2{}

\displaystyle \frac{2}{4}

\displaystyle \frac{11}{16}

\displaystyle \frac{3}{8}

\displaystyle \frac{1}{8}

Correct answer:

\displaystyle \frac{1}{8}

Explanation:

\displaystyle \frac{3}{4}-\frac{5}{8}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{3}{4}\times\frac{2}{2}=\frac{6}{8}

Now that we have common denominators, we can subtract the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{6}{8}-\frac{5}{8}=\frac{1}{8}

 

 

Learning Tools by Varsity Tutors