SSAT Elementary Level Math : SSAT Elementary Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1505 : How To Add

If I have \displaystyle 2 quarters and \displaystyle 3 pennies, how many cents do I have? 

Possible Answers:

\displaystyle 50\cent

\displaystyle 52\cent

\displaystyle 53\cent

\displaystyle 51\cent

\displaystyle 49\cent

Correct answer:

\displaystyle 53\cent

Explanation:

Each quarter is worth \displaystyle 25\cent and each penny is worth \displaystyle 1\cent.

We have two quarters and three pennies. 

\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent} \displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 3\cent}

\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 3\cent\end{array}}{ \ \ \space 53\cent}

Example Question #342 : Measurement & Data

If I have \displaystyle 1 dime and \displaystyle 2 nickels, how many cents do I have? 

Possible Answers:

\displaystyle 22\cent

\displaystyle 21\cent

\displaystyle 24\cent

\displaystyle 20\cent

\displaystyle 23\cent

Correct answer:

\displaystyle 20\cent

Explanation:

Each dime is worth \displaystyle 10\cent and each nickel is worth \displaystyle 5\cent.

We have one dime and two nickels. 

\displaystyle 10\cent \displaystyle \frac{\begin{array}[b]{r}5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 10\cent}

\displaystyle \frac{\begin{array}[b]{r}10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 20\cent}

Example Question #472 : Operations

If I have \displaystyle 5 pennies and \displaystyle 4 nickels, how many cents do I have? 

Possible Answers:

\displaystyle 25\cent

\displaystyle 26\cent

\displaystyle 27\cent

\displaystyle 24\cent

\displaystyle 28\cent

Correct answer:

\displaystyle 25\cent

Explanation:

Each penny is worth \displaystyle 1\cent and each nickel is worth \displaystyle 5\cent.

We have five pennies and four nickels. 

\displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ \ 1\cent\\ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 5\cent} \displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 20\cent}

\displaystyle \frac{\begin{array}[b]{r}5\cent\\ +\ 20\cent\end{array}}{ \ \ \ \space 25\cent}

Example Question #342 : Measurement & Data

If I have \displaystyle 2 pennies and \displaystyle 2 quarters, how many cents do I have?

Possible Answers:

\displaystyle 54\cent

\displaystyle 51\cent

\displaystyle 52\cent

\displaystyle 50\cent

\displaystyle 53\cent

Correct answer:

\displaystyle 52\cent

Explanation:

Each penny is worth \displaystyle 1\cent and each quarter is worth \displaystyle 25\cent.

We have two pennies and two quarters. 

\displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent} \displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent}

\displaystyle \frac{\begin{array}[b]{r}2\cent\\ +\ 50\cent\end{array}}{ \ \ \ \space 52\cent}

Example Question #481 : Numbers And Operations

If I have \displaystyle 2 nickels and \displaystyle 4 dimes, how many cents do I have? 

Possible Answers:

\displaystyle 50\cent

\displaystyle 49\cent

\displaystyle 48\cent

\displaystyle 51\cent

\displaystyle 47\cent

Correct answer:

\displaystyle 50\cent

Explanation:

Each nickel is worth \displaystyle 5\cent and each dime is worth \displaystyle 10\cent.

We have two nickels and four dimes.

 \displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ +\ 5\cent\end{array}}{ \ \ \space 10\cent} \displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\10\cent\\ \ +\ 10\cent\end{array}}{ \ \ \ \space 40\cent}

\displaystyle \frac{\begin{array}[b]{r}10\cent\\ +\ 40\cent\end{array}}{ \ \ \ \space 50\cent}

Example Question #51 : Solve Word Problems Involving Money: Ccss.Math.Content.2.Md.C.8

If I have \displaystyle 3 quarter and \displaystyle 3 nickels, how many cents do I have?

Possible Answers:

\displaystyle 89\cent

\displaystyle 90\cent

\displaystyle 87\cent

\displaystyle 86\cent

\displaystyle 88\cent

Correct answer:

\displaystyle 90\cent

Explanation:

Each quarter is worth \displaystyle 25\cent and each nickel is worth \displaystyle 5\cent.

We have one quarter and three nickels.

 \displaystyle \frac{\begin{array}[b]{r}25\cent\\ \ 25\cent\\ +\ 25\cent\end{array}}{ \ \ \space 75\cent} \displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 15\cent}

\displaystyle \frac{\begin{array}[b]{r}75\cent\\ +\ 15\cent\end{array}}{ \ \ \ \space 90\cent}

Example Question #52 : Solve Word Problems Involving Money: Ccss.Math.Content.2.Md.C.8

If I have \displaystyle 4 dimes and \displaystyle 2 pennies, how many cents do I have?

Possible Answers:

\displaystyle 40\cent

\displaystyle 43\cent

\displaystyle 44\cent

\displaystyle 41\cent

\displaystyle 42\cent

Correct answer:

\displaystyle 42\cent

Explanation:

Each dime is worth \displaystyle 10\cent and each penny is worth \displaystyle 1\cent.

We have four dimes and two pennies. 

\displaystyle \frac{\begin{array}[b]{r}10\cent\\ 10\cent\\ \ 10\cent\\+\ 10\cent\end{array}}{ \ \ \ \space 40\cent} \displaystyle \frac{\begin{array}[b]{r}1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent}

\displaystyle \frac{\begin{array}[b]{r}40\cent\\ +\ 2\cent\end{array}}{ \ \ \space 42\cent}

Example Question #53 : Solve Word Problems Involving Money: Ccss.Math.Content.2.Md.C.8

If I have \displaystyle 2 dimes and \displaystyle 2 pennies, how many cents do I have?

Possible Answers:

\displaystyle 26\cent

\displaystyle 23\cent

\displaystyle 25\cent

\displaystyle 22\cent

\displaystyle 24\cent

Correct answer:

\displaystyle 22\cent

Explanation:

Each dime is worth \displaystyle 10\cent and each penny is worth \displaystyle 1\cent

We have two dimes and two pennies. 

 \displaystyle \frac{\begin{array}[b]{r}10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 20\cent}  \displaystyle \frac{\begin{array}[b]{r}1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent}

\displaystyle \frac{\begin{array}[b]{r}20\cent\\ +\ 2\cent\end{array}}{ \ \ \space 22\cent}

Example Question #51 : Solve Word Problems Involving Money: Ccss.Math.Content.2.Md.C.8

If I have \displaystyle 2 quarters and \displaystyle 5 pennies, how many cents do I have? 

Possible Answers:

\displaystyle 57\cent

\displaystyle 58\cent

\displaystyle 55\cent

\displaystyle 56\cent

\displaystyle 59\cent

Correct answer:

\displaystyle 55\cent

Explanation:

Each quarter is worth \displaystyle 25\cent and each penny is worth \displaystyle 1\cent.

We have two quarters and five pennies. 

\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent}    \displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ \ 1\cent\\1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 5\cent}

\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 5\cent\end{array}}{ \ \ \space 55\cent}

Example Question #1512 : How To Add

If I have \displaystyle 4 dimes and \displaystyle 3 nickels, how many cents do I have? 

Possible Answers:

\displaystyle 50\cent

\displaystyle 60\cent

\displaystyle 55\cent

\displaystyle 70\cent

\displaystyle 65\cent

Correct answer:

\displaystyle 55\cent

Explanation:

Each dime is worth \displaystyle 10\cent and each nickel is worth \displaystyle 5\cent.

We have four dimes and three nickels. 

\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ 10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 40\cent} \displaystyle \frac{\begin{array}[b]{r}5\cent\\ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \ \space 15\cent}

\displaystyle \frac{\begin{array}[b]{r}40\cent\\ +\ 15\cent\end{array}}{ \ \ \space 55\cent}

Learning Tools by Varsity Tutors