SSAT Elementary Level Math : SSAT Elementary Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #457 : Operations

If I have \(\displaystyle 4\) nickels and \(\displaystyle 4\) dimes, how many cents do I have?

Possible Answers:

\(\displaystyle 56\cent\)

\(\displaystyle 55\cent\)

\(\displaystyle 60\cent\)

\(\displaystyle 42\cent\)

\(\displaystyle 40\cent\)

Correct answer:

\(\displaystyle 60\cent\)

Explanation:

Each nickel is worth \(\displaystyle 5\cent\) and each dime is worth \(\displaystyle 10\cent\).

We have four nickels and four dimes.

 \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\5\cent\\ \ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 20\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\10\cent\\ \ +\ 10\cent\end{array}}{ \ \ \ \space 40\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}20\cent\\ +\ 40\cent\end{array}}{ \ \ \ \space 60\cent}\)

Example Question #451 : Operations

If I have \(\displaystyle 2\) quarter and \(\displaystyle 3\) nickels, how many cents do I have?

Possible Answers:

\(\displaystyle 65\cent\)

\(\displaystyle 63\cent\)

\(\displaystyle 60\cent\)

\(\displaystyle 50\cent\)

\(\displaystyle 53\cent\)

Correct answer:

\(\displaystyle 65\cent\)

Explanation:

Each quarter is worth \(\displaystyle 25\cent\) and each nickel is worth \(\displaystyle 5\cent\).

We have two quarters and three nickels.

 \(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 15\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 15\cent\end{array}}{ \ \ \ \space 65\cent}\)

Example Question #459 : Operations

If I have \(\displaystyle 6\) dimes and \(\displaystyle 2\) pennies, how many cents do I have? 

Possible Answers:

\(\displaystyle 69\cent\)

\(\displaystyle 60\cent\)

\(\displaystyle 64\cent\)

\(\displaystyle 62\cent\)

\(\displaystyle 68\cent\)

Correct answer:

\(\displaystyle 62\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each penny is worth \(\displaystyle 1\cent\).

We have six dimes and two pennies. 

\(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ 10\cent\\ 10\cent\\ 10\cent\\ \ 10\cent\\+\ 10\cent\end{array}}{ \ \ \ \space 60\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}60\cent\\ +\ 2\cent\end{array}}{ \ \ \space 62\cent}\)

Example Question #2331 : Operations

If I have \(\displaystyle 4\) dimes and \(\displaystyle 2\) pennies, how many cents do I have? 

Possible Answers:

\(\displaystyle 34\cent\)

\(\displaystyle 46\cent\)

\(\displaystyle 32\cent\)

\(\displaystyle 42\cent\)

\(\displaystyle 40\cent\)

Correct answer:

\(\displaystyle 42\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each penny is worth \(\displaystyle 1\cent\)

We have four dimes and two pennies. 

 \(\displaystyle \frac{\begin{array}[b]{r}10\cent\\10\cent\\ \ 10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 40\cent}\)  \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}40\cent\\ +\ 2\cent\end{array}}{ \ \ \space 42\cent}\)

Example Question #462 : Operations

If I have \(\displaystyle 2\) quarters and \(\displaystyle 7\) pennies, how many cents do I have?

Possible Answers:

\(\displaystyle 58\cent\)

\(\displaystyle 61\cent\)

\(\displaystyle 57\cent\)

\(\displaystyle 60\cent\)

\(\displaystyle 59\cent\)

Correct answer:

\(\displaystyle 57\cent\)

Explanation:

Each quarter is worth \(\displaystyle 25\cent\) and each penny is worth \(\displaystyle 1\cent\).

We have two quarters and seven pennies. 

\(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent}\)    \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\1\cent\\ \ 1\cent\\ 1\cent\\ \ 1\cent\\1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 7\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 7\cent\end{array}}{ \ \ \space 57\cent}\)

Example Question #463 : Operations

If I have \(\displaystyle 4\) dimes and \(\displaystyle 2\) nickel, how many cents do I have? 

Possible Answers:

\(\displaystyle 65\cent\)

\(\displaystyle 60\cent\)

\(\displaystyle 70\cent\)

\(\displaystyle 50\cent\)

\(\displaystyle 55\cent\)

Correct answer:

\(\displaystyle 50\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each nickel is worth \(\displaystyle 5\cent\).

We have four dimes and two nickels. 

\(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ 10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 40\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 10\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}40\cent\\ +\ 10\cent\end{array}}{ \ \ \space 50\cent}\)

Example Question #464 : Operations

If I have \(\displaystyle 2\) quarters and \(\displaystyle 3\) pennies, how many cents do I have? 

Possible Answers:

\(\displaystyle 50\cent\)

\(\displaystyle 57\cent\)

\(\displaystyle 56\cent\)

\(\displaystyle 53\cent\)

\(\displaystyle 58\cent\)

Correct answer:

\(\displaystyle 53\cent\)

Explanation:

Each quarter is worth \(\displaystyle 25\cent\) and each penny is worth \(\displaystyle 1\cent\).

We have two quarters and two pennies. 

\(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 3\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 3\cent\end{array}}{ \ \ \space 53\cent}\)

Example Question #465 : Operations

If I have \(\displaystyle 4\) nickels and \(\displaystyle 4\) dimes, how many cents do I have? 

Possible Answers:

\(\displaystyle 60\cent\)

\(\displaystyle 52\cent\)

\(\displaystyle 58\cent\)

\(\displaystyle 54\cent\)

\(\displaystyle 63\cent\)

Correct answer:

\(\displaystyle 60\cent\)

Explanation:

Each nickel is worth \(\displaystyle 5\cent\) and each dime is worth \(\displaystyle 10\cent\).

We have four nickels and four dimes. 

\(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\5\cent\\ +\ 5\cent\end{array}}{ \ \ \ \space 20\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}10\cent\\10\cent\\ \ 10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 40\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}20\cent\\ +\ 40\cent\end{array}}{ \ \ \ \space 60\cent}\)

Example Question #466 : Operations

If I have \(\displaystyle 3\) quarters and \(\displaystyle 4\) pennies, how many cents do I have?

Possible Answers:

\(\displaystyle 81\cent\)

\(\displaystyle 79\cent\)

\(\displaystyle 70\cent\)

\(\displaystyle 86\cent\)

\(\displaystyle 74\cent\)

Correct answer:

\(\displaystyle 79\cent\)

Explanation:

Each quarter is worth \(\displaystyle 25\cent\) and each penny is worth \(\displaystyle 1\cent\).

We have three quarters and four pennies. 

\(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ \ 25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 75\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\1\cent\\ \ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 4\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}75\cent\\ +\ 4\cent\end{array}}{ \ \ \space 79\cent}\)

Example Question #321 : Measurement & Data

If I have \(\displaystyle 2\) dimes and \(\displaystyle 3\) nickels, how many cents do I have? 

Possible Answers:

\(\displaystyle 44\cent\)

\(\displaystyle 40\cent\)

\(\displaystyle 56\cent\)

\(\displaystyle 50\cent\)

\(\displaystyle 35\cent\)

Correct answer:

\(\displaystyle 35\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each nickel is worth \(\displaystyle 5\cent\).

We have two dimes and three nickels. 

\(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 20\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 15\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}20\cent\\ +\ 15\cent\end{array}}{ \ \ \ \space 35\cent}\)

Learning Tools by Varsity Tutors