SSAT Elementary Level Math : Operations

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1163 : Common Core Math: Grade 1

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 20\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 20\)

\(\displaystyle 10\)

\(\displaystyle 30\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 0\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 20\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 2-2=0\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 20\end{array}}{ \ \ \ \ \ \space0}\)

Example Question #1164 : Common Core Math: Grade 1

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 20\)

\(\displaystyle 10\)

\(\displaystyle 40\)

\(\displaystyle 50\)

Correct answer:

\(\displaystyle 20\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 6-4=2\)

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \ \space20}\)

Example Question #1162 : Common Core Math: Grade 1

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 50\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 0\)

\(\displaystyle 40\)

\(\displaystyle 10\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 30\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 50\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 8-5=3\)

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 50\end{array}}{ \ \ \ \space30}\)

Example Question #1166 : Common Core Math: Grade 1

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 40\)

\(\displaystyle 50\)

\(\displaystyle 20\)

\(\displaystyle 30\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 20\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 6-4=2\)

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \ \space20}\)

Example Question #801 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}35\\ -\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 15\)

\(\displaystyle 25\)

\(\displaystyle 30\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 25\)

Explanation:

When we subtract \(\displaystyle 10\) from a two digit number, the only number that changes in our answer is the tens position, and it will always go down by \(\displaystyle 1\). Mentally, we can subtract \(\displaystyle 1\) from the number in the tens place to find our answer. 

\(\displaystyle 3-1=2\)

\(\displaystyle \frac{\begin{array}[b]{r}35\\ -\ 10\end{array}}{ \ \ \ \ \space25}\)

Example Question #311 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 50\)

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 20\)

\(\displaystyle 60\)

Correct answer:

\(\displaystyle 20\)

Explanation:

When we subtract \(\displaystyle 10\) from a two digit number, the only number that changes in our answer is the tens position, and it will always go down by \(\displaystyle 1\). Mentally, we can subtract \(\displaystyle 1\) from the number in the tens place to find our answer. 

\(\displaystyle 3-1=2\)

\(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 10\end{array}}{ \ \ \ \space20}\)

Example Question #801 : Operations

\(\displaystyle \frac{\begin{array}[b]{r}25\\ -\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 25\)

\(\displaystyle 0\)

\(\displaystyle 20\)

\(\displaystyle 15\)

Correct answer:

\(\displaystyle 15\)

Explanation:

When we subtract \(\displaystyle 10\) from a two digit number, the only number that changes in our answer is the tens position, and it will always go down by \(\displaystyle 1\). Mentally, we can subtract \(\displaystyle 1\) from the number in the tens place to find our answer. 

\(\displaystyle 2-1=1\)

\(\displaystyle \frac{\begin{array}[b]{r}25\\ -\ 10\end{array}}{ \ \ \ \space15}\)

Example Question #801 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 40\)

\(\displaystyle 30\)

\(\displaystyle 10\)

\(\displaystyle 20\)

\(\displaystyle 50\)

Correct answer:

\(\displaystyle 10\)

Explanation:

When we subtract \(\displaystyle 10\) from a two digit number, the only number that changes in our answer is the tens position, and it will always go down by \(\displaystyle 1\). Mentally, we can subtract \(\displaystyle 1\) from the number in the tens place to find our answer. 

\(\displaystyle 2-1=1\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 10\end{array}}{ \ \ \ \space10}\)

Example Question #52 : Place Value And Properties Of Operations To Add And Subtract

\(\displaystyle \frac{\begin{array}[b]{r}15\\ -\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 5\)

\(\displaystyle 15\)

\(\displaystyle 25\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 5\)

Explanation:

When we subtract \(\displaystyle 10\) from a two digit number, the only number that changes in our answer is the tens position, and it will always go down by \(\displaystyle 1\). Mentally, we can subtract \(\displaystyle 1\) from the number in the tens place to find our answer. 

\(\displaystyle 1-1=\)\(\displaystyle 0\)

\(\displaystyle \frac{\begin{array}[b]{r}15\\ -\ 10\end{array}}{ \ \ \ \ \ \space5}\)

Example Question #802 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 0\)

\(\displaystyle 40\)

\(\displaystyle 20\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 0\)

Explanation:

When we subtract \(\displaystyle 10\) from a two digit number, the only number that changes in our answer is the tens position, and it will always go down by \(\displaystyle 1\). Mentally, we can subtract \(\displaystyle 1\) from the number in the tens place to find our answer. 

\(\displaystyle 1-1=\)\(\displaystyle 0\)

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 10\end{array}}{ \ \ \ \ \ \space0}\)

Learning Tools by Varsity Tutors