SAT Math : How to find f(x)

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #111 : How To Find F(X)

If \(\displaystyle f(x)=3x\) and \(\displaystyle g(x)=x^3+1\), what is \(\displaystyle f(g(3))\)?

Possible Answers:

\(\displaystyle 81\)

\(\displaystyle 30\)

\(\displaystyle 730\)

\(\displaystyle 729\)

\(\displaystyle 84\)

Correct answer:

\(\displaystyle 84\)

Explanation:

Whenever there is a function, all you need to do is plug in the \(\displaystyle x-\)value into the function. Since this is multi-function, whichever answer we get for the inside function, we plug it into the outer function.

\(\displaystyle f(x)=3x\) ; \(\displaystyle g(x)=x^3+1\)

\(\displaystyle f(g(3))=f(3^3+1)=f(28)\)

\(\displaystyle f(28)=3(28)=84\)

 

Example Question #112 : How To Find F(X)

If \(\displaystyle f(x)=x^2-2\) and \(\displaystyle g(x)=x+4\), then what is \(\displaystyle g(f(x+1))\)?

Possible Answers:

\(\displaystyle x^2+2x+3\)

\(\displaystyle x^2-3x-1\)

\(\displaystyle x^2-x-4\)

\(\displaystyle x^2-4x+3\)

\(\displaystyle x^2-2x+4\)

Correct answer:

\(\displaystyle x^2+2x+3\)

Explanation:

Whenever there is a function, all you need to do is plug in the \(\displaystyle x-\)value into the function. Since this is multi-function, whichever answer we get for the inside function, we plug it into the outer function.

\(\displaystyle f(x)=x^2-2\) and \(\displaystyle g(x)=x+4\)

\(\displaystyle g(f(x+1))=g((x+1)^2-2)=g(x^2+x+x+1-2)=g(x^2+2x-1)\)

\(\displaystyle g(x^2+2x-1)=x^2+2x-1+4=x^2+2x+3\)

Example Question #113 : How To Find F(X)

If \(\displaystyle f(x)=3x+2\), then what value of \(\displaystyle x\) will make \(\displaystyle f(x)=14\) true?

Possible Answers:

\(\displaystyle 54\)

\(\displaystyle 4\)

\(\displaystyle 3\)

\(\displaystyle 64\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 4\)

Explanation:

We know \(\displaystyle f(x)=3x+2\) and \(\displaystyle f(x)=14\). Just set them equal to each other.

\(\displaystyle 3x+2=14\) Subtract \(\displaystyle 2\) on both sides.

\(\displaystyle 3x=12\) Divide \(\displaystyle 3\) on both sides.

\(\displaystyle x=4\)

Example Question #2851 : Sat Mathematics

If \(\displaystyle f(x)=x^2+17\), then what value of \(\displaystyle x\) will make \(\displaystyle f(x)=66\) true?

Possible Answers:

\(\displaystyle \pm6\)

\(\displaystyle 7\)

\(\displaystyle 5\)

\(\displaystyle \pm7\)

\(\displaystyle -8\)

Correct answer:

\(\displaystyle \pm7\)

Explanation:

We know \(\displaystyle f(x)=x^2+17\) and \(\displaystyle f(x)=66\). Just set them equal to each other.

\(\displaystyle x^2+17=66\) Subtract \(\displaystyle 17\) on both sides.

\(\displaystyle x^2=49\) Take square root on both sides and account for also negative answers.

\(\displaystyle x=\pm7\)

Example Question #111 : How To Find F(X)

If \(\displaystyle f(x)=\left | x+1\right |\) then what value of \(\displaystyle x\) will make \(\displaystyle f(x)=12\) true?

Possible Answers:

\(\displaystyle \pm13\)

\(\displaystyle 11, -13\)

\(\displaystyle -13\)

\(\displaystyle 11\)

\(\displaystyle \pm11\)

Correct answer:

\(\displaystyle 11, -13\)

Explanation:

We know that \(\displaystyle f(x)=\left | x+1\right |\) and \(\displaystyle f(x)=12\). Just set them equal to each other.

\(\displaystyle \left | x+1\right |=12\) Remember to account for negative values.

\(\displaystyle x+1=12\) Subtract \(\displaystyle 1\) on both sides.

\(\displaystyle x=11\)

\(\displaystyle x+1=-12\) Subtract \(\displaystyle 1\) on both sides.

\(\displaystyle x=-13\)

Example Question #2862 : Sat Mathematics

If \(\displaystyle f(x)=x+5\) and \(\displaystyle g(x)=x^2\) then what value of \(\displaystyle x\) will make \(\displaystyle f(g(x))=30\) true?

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle \pm5\)

\(\displaystyle 7\)

\(\displaystyle 3\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle \pm5\)

Explanation:

We know \(\displaystyle f(g(x))=30\) so we need to apply substitutions to solve for \(\displaystyle x\).

\(\displaystyle f(g(x))=f(x^2)=x^2+5=30\) Subtract \(\displaystyle 5\) on both sides.

\(\displaystyle x^2=25\) Take square root on both sides and account for negative values.

\(\displaystyle x=\pm5\)

Example Question #2863 : Sat Mathematics

If \(\displaystyle f(x)=x-1, g(x)=x^2+x\), then what value of \(\displaystyle x\) will make \(\displaystyle f(g(x))=5\)

Possible Answers:

\(\displaystyle 2,-3\)

\(\displaystyle \pm2, \pm3\)

\(\displaystyle -3, 2\)

\(\displaystyle \pm3\)

\(\displaystyle \pm2\)

Correct answer:

\(\displaystyle -3, 2\)

Explanation:

\(\displaystyle f(x)=x-1, g(x)=x^2+x\)

We know \(\displaystyle f(g(x))=5\) so let's make the substitution.

\(\displaystyle f(g(x))=f(x^2+x)=x^2+x-1=5\) This is a quadratic so subtract \(\displaystyle 5\) on both sides.

\(\displaystyle x^2+x-6=0\) Factor.

\(\displaystyle (x+3)(x-2)=0\) Solve individually.

\(\displaystyle x=-3, 2\)

Example Question #2864 : Sat Mathematics

Define \(\displaystyle f(x) = 7x - 15\).

How can \(\displaystyle g(x)\) be defined so that \(\displaystyle (f \circ g) (x) = 14x + 4\) ?

Possible Answers:

\(\displaystyle g(x) = \frac{14x+ 4}{7x-15}\)

\(\displaystyle g(x) = 2x + \frac{ 19}{7}\)

\(\displaystyle g(x) = \frac{7x-15}{14x+ 4}\)

\(\displaystyle g(x) = \frac{1}{2}x - \frac{ 11}{14}\)

\(\displaystyle g(x)= -7x - 19\)

Correct answer:

\(\displaystyle g(x) = 2x + \frac{ 19}{7}\)

Explanation:

By definition,

\(\displaystyle (f \circ g) (x) = f [g(x)]\)

so

\(\displaystyle f [g(x)] = 14x + 4\)

If

\(\displaystyle f(x) = 7x - 15\),

it follows that 

\(\displaystyle f [g(x)] =7g(x) - 15\),

and, substituting, 

\(\displaystyle 7g(x) - 15 = 14x + 4\)

Solving for \(\displaystyle g(x)\) by isolating this expression:

\(\displaystyle 7g(x) - 15 + 15 = 14x + 4 + 15\)

\(\displaystyle 7g(x) = 14x + 19\)

\(\displaystyle 7g(x) \div 7 = (14x + 19) \div 7\)

\(\displaystyle g(x) = \frac{14x + 19}{7}\)

\(\displaystyle g(x) = 2x + \frac{ 19}{7}\).

Example Question #2865 : Sat Mathematics

Define \(\displaystyle f(x) = x^{2} + 4\).

How can \(\displaystyle g(x)\) be defined so that \(\displaystyle (f \circ g) (x) = 6x\) ?

Possible Answers:

\(\displaystyle g(x) = \sqrt{ 6x - 4}\)

\(\displaystyle g(x) = -4 + \sqrt{ 6x }\)

\(\displaystyle g(x) = \frac{1}{6} \sqrt{ x - 4}\)

\(\displaystyle g(x) = \sqrt{ \frac{x - 4}{6}}\)

\(\displaystyle g(x) = 6 \sqrt{ x - 4}\)

Correct answer:

\(\displaystyle g(x) = \sqrt{ 6x - 4}\)

Explanation:

By definition,

\(\displaystyle (f \circ g) (x) = f [g(x)]\)

so

\(\displaystyle f [g(x)] = 6x\)

If

\(\displaystyle f(x) = x^{2} + 4\),

it follows that 

\(\displaystyle f [g(x)] = [g(x)]^{2} + 4\),

and, substituting, 

\(\displaystyle [g(x)]^{2} + 4 = 6x\)

Solving for \(\displaystyle g(x)\) by isolating this expression:

\(\displaystyle [g(x)]^{2} + 4 = 6x\)

\(\displaystyle [g(x)]^{2} = 6x - 4\)

Taking the square root of both sides:

\(\displaystyle g(x) = \pm \sqrt{ 6x - 4}\)

Either \(\displaystyle g(x) =- \sqrt{ 6x - 4}\), which is not among the given choices, or \(\displaystyle g(x) = \sqrt{ 6x - 4}\), which is.

Example Question #2866 : Sat Mathematics

Define \(\displaystyle f(x) = \sqrt{3x+ 21 }\).

How can \(\displaystyle g(x)\) be defined so that \(\displaystyle (f \circ g) (x) = 9x\) ?

Possible Answers:

\(\displaystyle g(x) = 9 x^{2} -49\)

\(\displaystyle g(x) = 27 x^{2} - 21\)

\(\displaystyle g(x) = 9 x^{2} + 42x +49\)

\(\displaystyle g(x) = 9 x^{2} -42x +49\)

\(\displaystyle g(x) = 27 x^{2} - 7\)

Correct answer:

\(\displaystyle g(x) = 27 x^{2} - 7\)

Explanation:

By definition,

\(\displaystyle (f \circ g) (x) = f [g(x)]\)

so

\(\displaystyle f [g(x)] = 9x\)

If

\(\displaystyle f(x) = \sqrt{3x+ 21}\),

it follows that 

\(\displaystyle f [g(x)] = \sqrt{3 [g(x)]+ 21}\),

and, substituting, 

\(\displaystyle \sqrt{3 [g(x)]+ 21 } = 9x\)

Solving for \(\displaystyle g(x)\) by isolating this expression:

\(\displaystyle \left (\sqrt{3 [g(x)]+ 21} \right ) ^{2}=\left ( 9x \right )^{2}\)

Applying the Power of a Product Rule:

\(\displaystyle 3 [g(x)]+ 21= 9^{2} \cdot x^{2}\)

\(\displaystyle 3 [g(x)]+ 21= 81 x^{2}\)

\(\displaystyle 3 [g(x)]+ 21- 21 = 81 x^{2} - 21\)

\(\displaystyle 3 [g(x)] = 81 x^{2} - 21\)

\(\displaystyle \frac{3 [g(x)] }{3} = \frac{ 81 x^{2} - 21 }{3}\)

\(\displaystyle g(x) = 27 x^{2} - 7\)

Learning Tools by Varsity Tutors