SAT II Math II : SAT Subject Test in Math II

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #25 : Single Variable Algebra

Solve: \displaystyle -3 \leq 2x + 1 < 4

Possible Answers:

\displaystyle -2 \leq x < \frac{3}{2}

\displaystyle x>-2

\displaystyle -2 \geq x >\frac{3}{2}

\displaystyle -4 \leq x < 3

\displaystyle x< \frac{3}{2}

Correct answer:

\displaystyle -2 \leq x < \frac{3}{2}

Explanation:

In order to solve this inequality, we need to apply each mathematical operation to all three sides of the equation.  Let's start by subtracting \displaystyle 1 from all the sides:

\displaystyle -4 \leq 2x < 3

Now we divide each side by \displaystyle 2.  Remember, because the \displaystyle 2 isn't negative, we don't have to flip the sign:

\displaystyle -2 \leq x < \frac{3}{2}

Example Question #181 : Sat Subject Test In Math Ii

Solve the inequality:  \displaystyle 2x-26\leq 22

Possible Answers:

\displaystyle x< 24

\displaystyle x\leq 24

\displaystyle x\geq-2

\displaystyle x< -2

\displaystyle x\geq24

Correct answer:

\displaystyle x\leq 24

Explanation:

Add 26 on both sides.

\displaystyle 2x-26+26\leq 22+26

\displaystyle 2x\leq 48

Divide by two on both sides.

\displaystyle \frac{2x}{2}\leq \frac{48}{2}

The answer is:  \displaystyle x\leq 24

Example Question #1 : Solving Inequalities

Solve the inequality:  \displaystyle -3(-5x+6)< 2x-3

Possible Answers:

\displaystyle x>\frac{15}{13}

\displaystyle x>-\frac{21}{13}

\displaystyle x< -\frac{21}{13}

\displaystyle x< \frac{15}{13}

\displaystyle x>\frac{21}{17}

Correct answer:

\displaystyle x< \frac{15}{13}

Explanation:

Distribute the negative through the terms of the binomial.

\displaystyle 15x-18< 2x-3

Subtract \displaystyle 2x on both sides.

\displaystyle 15x-18-2x< 2x-3-2x

\displaystyle 13x-18< -3

Add 18 on both sides.

\displaystyle 13x-18+18< -3+18

\displaystyle 13x< 15

Divide by 13 on both sides.

\displaystyle \frac{13x}{13}< \frac{15}{13}

The answer is:  \displaystyle x< \frac{15}{13}

Example Question #31 : Single Variable Algebra

Solve \displaystyle 4(8-3x)< 32-8(x+2)

Possible Answers:

\displaystyle x< 4

\displaystyle x>4

\displaystyle x>-4

\displaystyle x< -4

\displaystyle -4< x< 4

Correct answer:

\displaystyle x>4

Explanation:

The first thing we can do is distribute the \displaystyle 4 and the \displaystyle -8 into their respective terms:

\displaystyle 32-12x< 32-8x-16

Now we can start to simplify by gathering like terms.  Remember, if we multiply or divide by a negative number, we change the direction of the inequality:

\displaystyle -12x< -8x-16

\displaystyle 12x>8x+16

\displaystyle 4x>16

\displaystyle x>4

Example Question #3 : Solving Inequalities

Solve  \displaystyle \frac{2}{3}x>-18.

Possible Answers:

\displaystyle -27< x< 27

\displaystyle x< -27

\displaystyle x>-27

\displaystyle x>-27

\displaystyle x< 27

Correct answer:

\displaystyle x>-27

Explanation:

It can be tricky because there's a negative sign in the equation, but we never end up multiplying or dividing by a negative, so there's no need to change the direction of the inequality.  We simply divide by \displaystyle 2 and multiply by \displaystyle 3:

\displaystyle \frac{2}{3}x>-18

\displaystyle \frac{1}{3}x>-9

\displaystyle x>-27

Example Question #181 : Sat Subject Test In Math Ii

Solve \displaystyle -7\leq2x-1< 15.

Possible Answers:

\displaystyle -3\geq x >8

\displaystyle -3\leq x< 8

\displaystyle -3< x

\displaystyle 8\leq x

\displaystyle x= 8, -3

Correct answer:

\displaystyle -3\leq x< 8

Explanation:

Remember, anything we do to one side of the inequality, we must also do to the other two sides.  We can start by adding one to all three sides:

\displaystyle -7\leq2x-1< 15

\displaystyle -6\leq2x< 16

And now we divide each side by two:

\displaystyle -3\leq x< 8

Example Question #12 : Solving Inequalities

Solve \displaystyle -9\leq -(x-5)< 8.

Possible Answers:

\displaystyle 14= x>3

\displaystyle -14< x

\displaystyle 0\leq x < 3

\displaystyle 14\geq x>3

\displaystyle -14\leq x< 3

Correct answer:

\displaystyle 14\geq x>3

Explanation:

The first thing we can do is distribute the negative sign in the middle term.  Because we're not multiplying or dividing the entire inequality by a negative, we don't have the change the direction of the inequality signs:

\displaystyle -9\leq -x+5< 8

Now we can subtract \displaystyle 5 from the inequality:

\displaystyle -14\leq -x< 3

And finally, we can multiply by \displaystyle -1.  Note, this time we're multiplying the entire inequality by a negative, so we have to change the direction of the inequality signs:

\displaystyle 14\geq x>3

Example Question #32 : Single Variable Algebra

Solve \displaystyle x+3 \leq 2(x-4).

Possible Answers:

\displaystyle -11 \geq x

\displaystyle -11 \leq x

\displaystyle 11 \geq x

\displaystyle 11 = x

\displaystyle 11 \leq x

Correct answer:

\displaystyle 11 \leq x

Explanation:

We start by distributing the \displaystyle 2:

\displaystyle x+3 \leq 2x-8

Now we can add \displaystyle 8, and subtract an \displaystyle x from each side of the equation:

\displaystyle 11 \leq x

We didn't multiply or divide by a negative number, so we don't have to reverse the direction of the inequality sign.

Example Question #11 : Solving Inequalities

What is the solution set for \displaystyle x^2< 5x+6?

Possible Answers:

\displaystyle -1< x< 6

\displaystyle x>-1

\displaystyle x>6

\displaystyle -1\leq x \leq 6

Correct answer:

\displaystyle -1< x< 6

Explanation:

Start by finding the roots of the equation by changing the inequality to an equal sign.

\displaystyle x^2=5x+6

\displaystyle x^2-5x-6=0

\displaystyle (x-6)(x+1)=0

Now, make a number line with the two roots:

1

Pick a number less than \displaystyle -1 and plug it into the inequality to see if it holds.

For \displaystyle x=-2,

\displaystyle (-2)^2< 5(-2)+6

\displaystyle 4< -4 is clearly not true. The solution set cannot be \displaystyle x< -1.

Next, pick a number between \displaystyle -1\text{ and }6.

For \displaystyle x=0,

\displaystyle 0^2< 5(0)+6

\displaystyle 0< 6 is true so the solution set must include \displaystyle -1< x< 6.

Finally, pick a number greater than \displaystyle 6.

For \displaystyle x=7,

\displaystyle 7^2< 5(7)+6

\displaystyle 49< 41 is clearly not the so the solution set cannot be \displaystyle x>6.

Thus, the solution set for this inequality is \displaystyle -1< x< 6.

Example Question #181 : Sat Subject Test In Math Ii

Give the solution set of the inequality:

\displaystyle \frac{x^{2}+7x-18}{x-6} \ge 0

Possible Answers:

\displaystyle \left [-9, 2 \right ] \cup (6, \infty)

\displaystyle \left [-2, 6 \right )\cup [9, \infty)

\displaystyle (- \infty, -2] \cup (6, 9]

\displaystyle (- \infty, -9] \cup [2, 6)

\displaystyle (- \infty, -9] \cup (6, \infty)

Correct answer:

\displaystyle \left [-9, 2 \right ] \cup (6, \infty)

Explanation:

First, find the zeroes of the numerator and the denominator. This will give the boundary points of the intervals to be tested.

\displaystyle x^{2}+7x-18 = 0

\displaystyle (x+9)(x-2) = 0

\displaystyle x= -9\displaystyle x= 2

 

\displaystyle x-6 = 0

\displaystyle x= 6

 

Since the numerator may be equal to 0, \displaystyle x= -9 and \displaystyle x= 2 are included as solutions. However, since the denominator may not be equal to 0, \displaystyle x= 6 is excluded as a solution. 

Now, test each of four intervals for inclusion in the solution set by substituting one test value from each:

 

\displaystyle (-\infty, -9)

Let's test \displaystyle x = -10:

\displaystyle \frac{x^{2}+7x-18}{x-6} \ge 0

\displaystyle \frac{(-10)^{2}+7(-10)-18}{(-10)-6} \ge 0

\displaystyle \frac{100-70-18}{-10-6} \ge 0

\displaystyle \frac{12}{-16} \ge 0

\displaystyle -\frac{3}{4} \ge 0

This is false, so \displaystyle (-\infty, -9) is excluded from the solution set.

 

\displaystyle (-9, 2)

Let's test \displaystyle x= 0:

\displaystyle \frac{x^{2}+7x-18}{x-6} \ge 0

\displaystyle \frac{0^{2}+7 (0)-18}{0-6} \ge 0

\displaystyle \frac{-18}{-6} \ge 0

\displaystyle 3 \ge 0

This is true, so \displaystyle (-9, 2) is included in the solution set.

 

\displaystyle (2, 6)

Let's test \displaystyle x = 3\;:

\displaystyle \frac{x^{2}+7x-18}{x-6} \ge 0

\displaystyle \frac{3^{2}+7(3)-18}{3-6} \ge 0

\displaystyle \frac{9+21-18}{3-6} \ge 0

\displaystyle \frac{12}{-3} \ge 0

\displaystyle -4 \ge 0

This is false, so \displaystyle (2, 6) is excluded from the solution set.

 

\displaystyle (6, \infty)

Let's test \displaystyle x = 7:

\displaystyle \frac{7^{2}+7 (7)-18}{7-6} \ge 0

\displaystyle \frac{49+49-18}{7-6} \ge 0

\displaystyle \frac{ 80}{1} \ge 0

\displaystyle 80 \ge 1

This is true, so \displaystyle (6, \infty) is included in the solution set.

 

The solution set is therefore \displaystyle \left [-9, 2 \right ] \cup (6, \infty).

Learning Tools by Varsity Tutors