SAT II Math II : SAT Subject Test in Math II

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Simplifying Expressions

Simplify the expression:  \displaystyle 6(2x-3)-2(-x-3)

Possible Answers:

\displaystyle 10x-9

\displaystyle 14x-12

\displaystyle 14x-24

\displaystyle 10x+9

\displaystyle 12x-12

Correct answer:

\displaystyle 14x-12

Explanation:

Distribute the integers through the binomials.

\displaystyle 12x-18 +2x+6

Combine like-terms.

The answer is:  \displaystyle 14x-12

Example Question #3 : Simplifying Expressions

Simplify \displaystyle x - 5 - (2 - x).

Possible Answers:

\displaystyle -3

\displaystyle 0

\displaystyle 2x - 7

\displaystyle x^2 - 7

\displaystyle x+3

Correct answer:

\displaystyle 2x - 7

Explanation:

We can start by distributing the negative sign in the parentheses term:

\displaystyle x - 5 - 2 + x

Now we can combine like terms.  The constants go together, and the variables go together:

\displaystyle 2x - 7

Example Question #3 : Simplifying Expressions

Simplify \displaystyle -(x + y) + 4x + 2y.

Possible Answers:

\displaystyle 3x + y

\displaystyle 3x-y

\displaystyle 3xy

\displaystyle 3(x+y)

\displaystyle 5x+3y

Correct answer:

\displaystyle 3x + y

Explanation:

First, we can distribute the negative sign through the parentheses term:

\displaystyle -x - y + 4x + 2y

Now we gather like terms.  Remember, you can't gather different variables together.  The \displaystyle x's and \displaystyle y's will still be separate terms:

\displaystyle 3x + y

Example Question #4 : Simplifying Expressions

Simplify \displaystyle -(x + 2y + 3) - 3x + y.

Possible Answers:

\displaystyle 4x +y +3

\displaystyle 2x +3y +3

\displaystyle -3x^2 -2y^2 - 3

\displaystyle 2x +3y -3

\displaystyle -4x - y - 3

Correct answer:

\displaystyle -4x - y - 3

Explanation:

Start by distributing the negative sign through the parentheses term:

\displaystyle -x - 2y - 3 - 3x + y

Now combine like terms.  Each variable can't be combined with different variables:

\displaystyle -4x - y - 3

Example Question #5 : Simplifying Expressions

Simplify \displaystyle (\sqrt{x^2})^2

Possible Answers:

\displaystyle \sqrt{x^3}

\displaystyle x^{\frac{1}{4}}

\displaystyle \sqrt{x^4}

\displaystyle x

\displaystyle x^2

Correct answer:

\displaystyle x^2

Explanation:

A square root is the inverse of squaring a term, so they cancel each other out:

\displaystyle (\sqrt{x^2})^2=x^2

From there, there's nothing left to simplify.

Example Question #11 : Simplifying Expressions

Simplify \displaystyle \sqrt{x^{11}}.

Possible Answers:

\displaystyle (\sqrt{x})^5

\displaystyle x^5 \cdot \sqrt{x}

\displaystyle \sqrt[5]{x}

\displaystyle x^{11}

\displaystyle 5\sqrt{x}

Correct answer:

\displaystyle x^5 \cdot \sqrt{x}

Explanation:

To begin, let's rewrite the equation so the square root is a fraction in the exponent:

\displaystyle x^{\frac{11}{2}}

From here, we can simplify the exponent:

\displaystyle x^5 \cdot x^{\frac{1}{2}}

Now we change the exponent fraction back into a square root:

\displaystyle x^5 \cdot \sqrt{x}

Example Question #201 : Sat Subject Test In Math Ii

Simplify \displaystyle (\sqrt{4x^2})\cdot (\sqrt{25x})^2.

Possible Answers:

\displaystyle 5 \sqrt{2x}

\displaystyle 50x^2

\displaystyle 50x^3

\displaystyle 25x +2x

\displaystyle 100x^2

Correct answer:

\displaystyle 50x^2

Explanation:

For the first square root, each term inside has a natural solution.  We can take the square root of each term individually because they are multiplied, and then combine them again:

\displaystyle 2x \cdot (\sqrt{25x})^2

For the second square root, we remember that the square root and a square cancel each other out, and we're left with just the term inside:

\displaystyle 2x \cdot 25x

We finish by multiplying the terms together:

\displaystyle 50x^2

Example Question #202 : Sat Subject Test In Math Ii

Simplify \displaystyle 2x^2 -5x(1 - 8x).

Possible Answers:

\displaystyle -11x^2

\displaystyle -38x^2 -5x

\displaystyle 42x^2 -5x

\displaystyle 2x^2-13x-1

\displaystyle 2x^2-13x

Correct answer:

\displaystyle 42x^2 -5x

Explanation:

We start by distributing the \displaystyle -5x term through the parentheses:

\displaystyle 2x^2 -5x + 40x^2

Now we combine like terms.  Remember, we can't add variables if they have different exponent terms:

\displaystyle 42x^2 -5x

Example Question #203 : Sat Subject Test In Math Ii

Simplify \displaystyle 2x^2+7x(-8x- 10).

Possible Answers:

\displaystyle 2x^2 -14x

\displaystyle -124x^3

\displaystyle 2x^2 -x-10

\displaystyle -54x^2- 70x

\displaystyle 56x^2 - 70x

Correct answer:

\displaystyle -54x^2- 70x

Explanation:

Start by distributing the \displaystyle 7x term:

\displaystyle 2x^2-56x^2- 70x

Now combine like terms.  Remember, if a variable has a different exponent, you can't add them:

\displaystyle -54x^2- 70x

Example Question #204 : Sat Subject Test In Math Ii

Simplify \displaystyle -10x(9x+ 4) - 5x^2.

Possible Answers:

\displaystyle 85x^2 +40x

\displaystyle -135x^3

\displaystyle 95x^2+40x

\displaystyle -95x^2- 40x

\displaystyle -90x^2 -45x

Correct answer:

\displaystyle -95x^2- 40x

Explanation:

Start by distributing the \displaystyle -10x term:

\displaystyle -90x^2- 40x - 5x^2

Now collect like terms.  Remember, you can't add or subtract variables that have different exponents:

\displaystyle -95x^2- 40x

Learning Tools by Varsity Tutors