SAT II Math II : Graphing Functions

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Graphing Linear Functions

Circle

Note: Figure NOT drawn to scale.

Refer to the above figure. The circle has its center at the origin; the line is tangent to the circle at the point indicated. What is the equation of the line in slope-intercept form?

Possible Answers:

Insufficient information is given to determine the equation of the line.

\displaystyle y = \frac{3}{4} x+ \frac{7}{2}

\displaystyle y = \frac{4}{3} x

\displaystyle y = - \frac{3}{4} x+ \frac{25}{2}

\displaystyle y = - \frac{4}{3} x+ 16

Correct answer:

\displaystyle y = - \frac{3}{4} x+ \frac{25}{2}

Explanation:

A line tangent to a circle at a given point is perpendicular to the radius from the center to that point. That radius, which has endpoints \displaystyle (0,0),(6,8),  has slope

\displaystyle m = \frac{8-0}{6-0} = \frac{8}{6} = \frac{4}{3}.

The line, being perpendicular to this radius, will have slope equal to the opposite of the reciprocal of that of the radius. This slope will be \displaystyle -\frac{3}{4}. Since it includes point \displaystyle (6,8), we can use the point-slope form of the line to find its equation:

\displaystyle y - y_{1} = m(x-x_{1})

\displaystyle y - 8= - \frac{3}{}4\left ( x-6 \right )

\displaystyle y - 8= - \frac{3}{4} x+ \frac{9}{2}

\displaystyle y - 8+ 8 = - \frac{3}{4} x+ \frac{9}{2} + 8

\displaystyle y = - \frac{3}{4} x+ \frac{25}{2}

 

Example Question #1 : Circles

What is the center and radius of the circle indicated by the equation?

\displaystyle (x-2)^2+y^2=36

Possible Answers:

\displaystyle (-2,0),\ r=36

\displaystyle (2,0),\ r=6

\displaystyle (2,0),\ r=36

\displaystyle (-2,0),\ r=6

Correct answer:

\displaystyle (2,0),\ r=6

Explanation:

A circle is defined by an equation in the format \displaystyle (x-h)^2+(y-k)^2=r^2.

The center is indicated by the point \displaystyle (h,k) and the radius \displaystyle r.

In the equation \displaystyle (x-2)^2+(y)^2=36=6^2, the center is \displaystyle (2,0) and the radius is \displaystyle 6.

Example Question #2 : Graphing Functions

Give the axis of symmetry of the parabola of the equation

\displaystyle f(x) = 3x^{2} + 9x - 16

Possible Answers:

\displaystyle x = -\frac{3}{2}

\displaystyle x = - 16

\displaystyle x = \frac{3}{2}

\displaystyle x= -\frac{1}{6}

\displaystyle x= \frac{1}{6}

Correct answer:

\displaystyle x = -\frac{3}{2}

Explanation:

The line of symmetry of the parabola of the equation

\displaystyle f(x) = ax^{2}+ bx + c

is the vertical line

\displaystyle x = -\frac{b}{2a}

Substitute \displaystyle a = 3, b = 9:

The line of symmetry is

\displaystyle x = -\frac{9}{2 \cdot 3} = - \frac{9}{6} = -\frac{3}{2}

That is, the line of the equation \displaystyle x =- \frac{3}{2}.

Example Question #3 : Graphing Functions

Give the \displaystyle y-coordinate of the vertex of the parabola of the function

\displaystyle f(x) = 4x^{2}- 16x + 1

Possible Answers:

\displaystyle -15

\displaystyle 1

\displaystyle -11

\displaystyle 49

\displaystyle 129

Correct answer:

\displaystyle -15

Explanation:

The \displaystyle x-coordinate of the vertex of a parabola of the form 

\displaystyle f(x) = ax^{2}+ bx + c

is

\displaystyle x= -\frac{b}{2a}.

Substitute \displaystyle a= 4, b = -16:

\displaystyle x= -\frac{-16}{2\cdot 4} = -\frac{-16}{8} = 2

The \displaystyle y-coordinate is therefore \displaystyle f(2):

\displaystyle f(x) = 4x^{2}- 16x + 1

\displaystyle f(2) = 4 \cdot 2 ^{2}- 16 \cdot 2 + 1

\displaystyle f(2) = 4 \cdot 4- 16 \cdot 2 + 1

\displaystyle f(2) = 16 - 32 + 1

\displaystyle f(2) = -15

Example Question #1 : Graphing Functions

A baseball is thrown straight up with an initial speed of 60 miles per hour by a man standing on the roof of a 100-foot high building. The height of the baseball in feet is modeled by the function

\displaystyle h(t) = -16t^{2}+60t + 100

To the nearest foot, how high is the baseball when it reaches the highest point of its path?

Possible Answers:

\displaystyle 140\textrm{ ft}

\displaystyle 172\textrm{ ft}

\displaystyle 156 \textrm{ ft}

\displaystyle 132\textrm{ ft}

\displaystyle 120\textrm{ ft}

Correct answer:

\displaystyle 156 \textrm{ ft}

Explanation:

We are seeking the value of \displaystyle h when the graph of \displaystyle h\left ( t\right ) - a parabola - reaches its vertex.

To find this value, we first find the value of \displaystyle t. For a parabola of the equation

\displaystyle f\left ( t\right ) = at^{2}+ bt + c,

the \displaystyle t value of the vertex is

\displaystyle t = -\frac{b}{2a}.

Substitute \displaystyle a = -16, b = 60:

\displaystyle t = -\frac{60}{2 (-16)} = 1.875

The height of the baseball after 1.875 seconds will be 

\displaystyle h(1.875) = -16 \cdot 1.875^{2}+60 \cdot 1.875 + 100

\displaystyle h(1.875) = -56.25 +112.5 + 100 \approx 156 feet.

Example Question #2 : Graphing Functions

Give the \displaystyle y-coordinate of the vertex of the parabola of the function

\displaystyle f(x) = 2x^{2} + 6x + 5.

Possible Answers:

\displaystyle \frac{37}{2}

\displaystyle \frac{1}{2}

\displaystyle \frac{3}{2}

\displaystyle 5

\displaystyle 41

Correct answer:

\displaystyle \frac{1}{2}

Explanation:

The \displaystyle x-coordinate of the vertex of a parabola of the form 

\displaystyle f(x) = ax^{2}+ bx + c

is

\displaystyle x= -\frac{b}{2a}.

Set \displaystyle a = 2, b = 6:

\displaystyle x= -\frac{6}{2\cdot 2} = -\frac{6}{4} =- \frac{3}{2}

The \displaystyle y-coordinate is therefore \displaystyle f\left (- \frac{3}{2} \right ):

\displaystyle f(x) = 2x^{2} + 6x + 5

\displaystyle f \left ( -\frac{3}{2} \right )= 2\left ( -\frac{3}{2} \right )^{2}+ 6\left ( -\frac{3}{2} \right ) + 5

\displaystyle = 2\left ( \frac{9}{4} \right ) + 6\left (- \frac{3}{2} \right ) + 5

\displaystyle = \frac{9}{2} - 9 + 5 = \frac{1}{2}, which is the correct choice.

Example Question #291 : Sat Subject Test In Math Ii

A baseball is thrown upward from the top of a one hundred and fifty-foot-high building. The initial speed of the ball is forty-five miles per hour. The height of the ball after \displaystyle t seconds is modeled by the function

\displaystyle h (t) = -16t^{2}+ 45t +150

How high does the ball get (nearest foot)?

Possible Answers:

\displaystyle 173 \textrm{ ft}

\displaystyle 205 \textrm{ ft}

\displaystyle 166 \textrm{ ft}

\displaystyle 195 \textrm{ ft}

\displaystyle 182 \textrm{ ft}

Correct answer:

\displaystyle 182 \textrm{ ft}

Explanation:

A quadratic function such as \displaystyle h has a parabola as its graph. The high point of the parabola - the vertex - is what we are looking for.

The vertex of a function 

\displaystyle h (t) = at^{2}+bt +c

has as coordinates 

\displaystyle \left ( - \frac{b}{2a} , h \left ( - \frac{b}{2a} \right ) \right ) .

 

The second coordinate is the height and we are looking for this quantity. Since \displaystyle h (t) = -16t^{2}+ 45t +150, setting \displaystyle a = -16, b= 45:

\displaystyle - \frac{b}{2a} = - \frac{45}{2(-16)} = \frac{45}{32} = 1.40625 seconds for the ball to reach the peak.

The height of the ball at this point is \displaystyle h ( 1.40625 ), which can be evaluated by substitution:

\displaystyle h (t) = -16t^{2}+ 45t +150

\displaystyle h (1.40625 ) = -16 (1.40625 )^{2}+ 45 (1.40625 ) +150

\displaystyle \approx -16 (1.9775 ) + 45 (1.40625 ) +150

\displaystyle \approx -31.6406 + 63.2813 + 150

\displaystyle \approx 181.6407

Round this to 182 feet.

Example Question #5 : Graphing Functions

Give the \displaystyle x-intercept(s) of the parabola of the equation

\displaystyle f(x) = 3x^{2}-9x -54

Possible Answers:

\displaystyle (-3,0) and \displaystyle (6,0)

\displaystyle (-4,0) and \displaystyle (9,0)

The parabola has no \displaystyle x-intercept.

\displaystyle (-54,0)

\displaystyle \left ( -\frac{3}{2}, 0 \right ) and \displaystyle \left ( \frac{3}{2}, 0 \right )

Correct answer:

\displaystyle (-3,0) and \displaystyle (6,0)

Explanation:

Set \displaystyle f(x)= 0 and solve for \displaystyle x:

\displaystyle f(x) = 3x^{2}-9x -54

\displaystyle 3x^{2}-9x -54 = 0

The terms have a GCF of 2, so

\displaystyle 3\left ( x^{2}- 3x - 18 \right )= 0

The trinomial in parentheses can be FOILed out by noting that \displaystyle -6 +3 = -3 and \displaystyle -6 \times 3= -18:

\displaystyle 3(x-6)(x+3)=0

And you can divide both sides by 3 to get rid of the coefficient:

\displaystyle (x-6)(x+3)=0

Set each of the linear binomials to 0 and solve for \displaystyle x:

\displaystyle x - 6 = 0 \Rightarrow x = 6

or

\displaystyle x +3= 0 \Rightarrow x = -3

The parabola has as its two intercepts the points \displaystyle (-3,0) and \displaystyle (6,0).

 

Example Question #1 : Graphing Functions

Give the amplitude of the graph of the function

\displaystyle f (x) = 2 \pi \sin 2 \pi x

Possible Answers:

\displaystyle 2 \pi

\displaystyle 1

\displaystyle 2

\displaystyle 4 \pi

\displaystyle \pi

Correct answer:

\displaystyle 2 \pi

Explanation:

The amplitude of the graph of a sine function \displaystyle f(x) = A \sin Bx is \displaystyle A. Here, \displaystyle A= 2 \pi, so this is the amplitude.

Example Question #81 : Functions And Graphs

Which of these functions has a graph with amplitude 4?

Possible Answers:

\displaystyle f(x) = 4 \cos \frac{\pi x}{5}

\displaystyle f(x) = \frac{1}{4}\cos \frac{\pi x}{3}

\displaystyle f(x) = \frac{1}{7}\cos \frac{\pi x }{4}

\displaystyle f(x) = 9\cos 4x

\displaystyle f(x) = \frac{2}{3}\cos \frac{ x }{4}

Correct answer:

\displaystyle f(x) = 4 \cos \frac{\pi x}{5}

Explanation:

The functions in each of the choices take the form of a cosine function 

\displaystyle f(x)= A \cos Nx.

The graph of a cosine function in this form has amplitude \displaystyle A. Therefore, for this function to have amplitude 4, \displaystyle A = 4. Of the five choices, only 

\displaystyle f(x) = 4 \cos \frac{\pi x}{5}

matches this description.

Learning Tools by Varsity Tutors