SAT II Math I : SAT Subject Test in Math I

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Trigonometry

Determine the exact value of \(\displaystyle 8cos(45)\).

Possible Answers:

\(\displaystyle \frac{\sqrt2}{8}\)

\(\displaystyle 6\sqrt2\)

\(\displaystyle \frac{\sqrt2}{4}\)

\(\displaystyle 8\sqrt2\)

\(\displaystyle 4\sqrt2\)

Correct answer:

\(\displaystyle 4\sqrt2\)

Explanation:

The exact value of \(\displaystyle cos(45)\) is the x-value when the angle is 45 degrees on the unit circle.  

The x-value of this angle is \(\displaystyle \frac{\sqrt2}{2}\).

\(\displaystyle 8cos(45)= 8\left(\frac{\sqrt{2}}{2}\right)=4\sqrt2\)

Example Question #12 : Trigonometry


Sine

Which of the following is equal to cos(x)?

Possible Answers:

\(\displaystyle sin(y)\)

\(\displaystyle cos(y)\)

\(\displaystyle sin(x)\)

\(\displaystyle tan(x)\)

\(\displaystyle tan(y)\)

Correct answer:

\(\displaystyle sin(y)\)

Explanation:

Remember SOH-CAH-TOA! That means:

\(\displaystyle \small cos(x)=\frac{adjacent}{hypotenuse}=\frac{b}{c}\)

    \(\displaystyle \small \small \small sin(x)=\frac{a}{c}\)                \(\displaystyle \small \small \small \small \small sin(y)=\frac{b}{c}\)  

                                     \(\displaystyle \small \small \small \small cos(y)=\frac{a}{c}\)  

    \(\displaystyle \small \small \small \small \small tan(x)=\frac{a}{b}\)                \(\displaystyle \small \small \small \small tan(y)=\frac{b}{a}\)  

sin(y) is equal to cos(x)

Example Question #2 : Sin, Cos, Tan

Find the value of \(\displaystyle \frac{1}{2}sin(45)+ tan(60)\).

Possible Answers:

\(\displaystyle \frac{3\sqrt2+\sqrt3}{12}\)

\(\displaystyle \frac{\sqrt2-4\sqrt3}{2}\)

\(\displaystyle \sqrt2+\sqrt3\)

\(\displaystyle \frac{\sqrt2+4\sqrt3}{4}\)

\(\displaystyle \frac{\sqrt2+4\sqrt3}{2}\)

Correct answer:

\(\displaystyle \frac{\sqrt2+4\sqrt3}{4}\)

Explanation:

To find the value of \(\displaystyle \frac{1}{2}sin(45)+ tan(60)\), solve each term separately.

\(\displaystyle \frac{1}{2}sin(45)=\frac{1}{2} \cdot \frac{\sqrt2}{2} = \frac{\sqrt2}{4}\)

\(\displaystyle tan(60) = \sqrt3\)

Sum the two terms.

\(\displaystyle \frac{\sqrt2}{4}+\sqrt3 = \frac{\sqrt2}{4}+\frac{4\sqrt3}{4} = \frac{\sqrt2+4\sqrt3}{4}\)

Example Question #3 : Sin, Cos, Tan

Calculate \(\displaystyle tan(\frac{4\pi}{3})\).

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 1\)

\(\displaystyle \sqrt{3}\)

\(\displaystyle -\sqrt{3}\)

\(\displaystyle -1\)

Correct answer:

\(\displaystyle \sqrt{3}\)

Explanation:

The tangent function has a period of \(\displaystyle \pi\) units. That is,

\(\displaystyle tan(x+n\pi)=tanx\)

for all \(\displaystyle n\in\mathbb{Z}\).

Since \(\displaystyle \frac{4\pi}{3}=\frac{\pi}{3}+\pi\), we can rewrite the original expression \(\displaystyle tan(\frac{4\pi}{3})\) as follows:

\(\displaystyle tan(\frac{4\pi}{3})=tan(\frac{\pi}{3}+\pi)\)

                 \(\displaystyle =tan(\frac{\pi}{3})\)

                 \(\displaystyle =\frac{sin(\frac{\pi}{3})}{cos(\frac{\pi}{3})}\)

                 \(\displaystyle =\frac{(\frac{\sqrt{3}}{2})}{(\frac{1}{2})}\)

                 \(\displaystyle =\sqrt{3}\)

Hence, 

\(\displaystyle tan(\frac{4\pi}{3})=\sqrt{3}\)

Example Question #1 : Trigonometric Operations

Calculate \(\displaystyle cos(\frac{5\pi}{3})\).

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle -\frac{\sqrt{3}}{2}\)

\(\displaystyle -\frac{1}{2}\)

\(\displaystyle \frac{\sqrt{3}}{2}\)

\(\displaystyle \frac{1}{2}\)

Correct answer:

\(\displaystyle \frac{1}{2}\)

Explanation:

First, convert the given angle measure from radians to degrees:

\(\displaystyle cos(\frac{5\pi}{3})=cos(300^{\circ})\)

Next, recall that \(\displaystyle 300^{\circ}\) lies in the fourth quadrant of the unit circle, wherein the cosine is positive. Furthermore, the reference angle of \(\displaystyle 300^{\circ}\) is 

\(\displaystyle 360^{\circ}-300^{\circ}=60^{\circ}\)

Hence, all that is required is to recognize from these observations that 

\(\displaystyle cos(\frac{5\pi}{3})=cos(300^{\circ}) =cos(60^{\circ})\),

which is \(\displaystyle \frac{1}{2}\).

Therefore,

\(\displaystyle cos(\frac{5\pi}{3})=\frac{1}{2}\)

Example Question #11 : Trigonometry

If \(\displaystyle \cot \alpha = 5\) and \(\displaystyle \sin \alpha < 0\), what is the value of \(\displaystyle \sec \alpha\)?

Possible Answers:

\(\displaystyle \frac{\sqrt{26}}{5}\)

\(\displaystyle -\frac{5}{\sqrt{26}}\)

\(\displaystyle -\frac{1}{\sqrt{26}}\)

\(\displaystyle -\frac{\sqrt{26}}{5}\)

\(\displaystyle \sqrt{26}\)

Correct answer:

\(\displaystyle -\frac{\sqrt{26}}{5}\)

Explanation:

Since cotangent is positive and sine is negative, alpha must be in quadrant III.  \(\displaystyle \cot \alpha = \frac{x}{y}\) then implies that \(\displaystyle (x,y)=(-5,-1)\) is a point on the terminal side of alpha. 

\(\displaystyle r=\sqrt{(x^2+y^2)}=\sqrt{26}\)

\(\displaystyle \sec \alpha = \frac{r}{x} = \frac{\sqrt{26}}{-5}\)

Example Question #12 : Trigonometry

If \(\displaystyle \csc \theta < 0\) and \(\displaystyle \tan \theta > 0\), then which of the following must be true about \(\displaystyle \theta\).

Possible Answers:

\(\displaystyle 0 < \theta < \frac{\pi}{2}\)

\(\displaystyle \frac{3\pi}{2} < \theta < 2\pi\)

\(\displaystyle \frac{\pi}{2} < \theta < \pi\)

\(\displaystyle -\frac{\pi}{2} < \theta < 0\)

\(\displaystyle \pi < \theta < \frac{3\pi}{2}\)

Correct answer:

\(\displaystyle \pi < \theta < \frac{3\pi}{2}\)

Explanation:

Since cosecant is negative, theta must be in quadrant III or IV. 

Since tangent is positive, it must be in quadrant I or III. 

Therefore, theta must be in quadrant III.

Using a unit circle we can see that quadrant III is when theta is between \(\displaystyle \pi\) and \(\displaystyle \frac{3\pi}{2}\).

Example Question #11 : Trigonometry

The point \(\displaystyle (12, 5)\) lies on the terminal side of an angle in standard position. Find the secant of the angle.

Possible Answers:

\(\displaystyle \frac{12}{13}\)

\(\displaystyle \frac{5}{13}\)

\(\displaystyle \frac{13}{5}\)

\(\displaystyle \frac{5}{12}\)

\(\displaystyle \frac{13}{12}\)

Correct answer:

\(\displaystyle \frac{13}{12}\)

Explanation:

Secant is defined to be the ratio of \(\displaystyle r\) to \(\displaystyle x\) where \(\displaystyle r\) is the distance from the origin. 

The Pythagoreanr Triple 5, 12, 13 helps us realize that \(\displaystyle r = 13\)

Since \(\displaystyle x = 12\), the answer is \(\displaystyle \frac{13}{12}\).

Example Question #13 : Trigonometry

Given angles \(\displaystyle x\) and \(\displaystyle y\) in quadrant I, and given,

 \(\displaystyle \sin x = \frac{3}{5}\) and \(\displaystyle \cos y = \frac {5}{13}\),

find the value of \(\displaystyle \csc (x+y)\).

Possible Answers:

\(\displaystyle \frac {65}{64}\)

\(\displaystyle \frac {99}{65}\)

\(\displaystyle \frac {65}{63}\)

\(\displaystyle \frac {65}{64}\)

\(\displaystyle \frac {63}{65}\)

Correct answer:

\(\displaystyle \frac {65}{63}\)

Explanation:

Use the following trigonometric identity to solve this problem.

\(\displaystyle \csc (x+y) = \frac {1}{\sin (x+y)} = \frac {1}{\sin x \cos y + \cos x \sin y}\)

Using the Pythagorean triple 3,4,5, it is easy to find \(\displaystyle \cos x = \frac {4}{5}\).

Using the Pythagorean triple 5,12,13, it is easy to find \(\displaystyle \sin y = \frac {12}{13}\).

So substituting all four values into the top equation, we get

\(\displaystyle \csc (x+y) = \frac {1}{\frac {3}{5} \cdot \frac {5}{13} + \frac {4}{5} \cdot \frac {12}{13}} = \frac {65}{63}\)

Example Question #1 : Sec, Csc, Ctan

Find the value of the trigonometric function in fraction form for triangle \(\displaystyle ABC\).

Triangle

What is the secant of \(\displaystyle \angle A\)?

Possible Answers:

\(\displaystyle 24/7\)

\(\displaystyle 7/25\)

\(\displaystyle 25/7\)

\(\displaystyle 24/25\)

\(\displaystyle \frac{25}{24}\)

Correct answer:

\(\displaystyle \frac{25}{24}\)

Explanation:

The value of the secant of an angle is the value of the hypotenuse over the adjacent.

Therefore:

\(\displaystyle sec \angle A = \frac{hypotenuse}{adjacent} = \frac{25}{24}\)

Learning Tools by Varsity Tutors