SAT II Math I : SAT Subject Test in Math I

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : Solving Equations

Define a function \displaystyle f(x) =5x- \cos 2x.

\displaystyle f(c) = 8 for exactly one value of \displaystyle c on the interval \displaystyle (1, 1.5). Which of the following is true of \displaystyle c?

Possible Answers:

\displaystyle c \in (1.1, 1.2)

\displaystyle c\in (1.4, 1.5)

\displaystyle c \in (1.0, 1.1 )

\displaystyle c \in (1.3, 1.4)

\displaystyle c \in (1.2, 1.3 )

Correct answer:

\displaystyle c\in (1.4, 1.5)

Explanation:

Define \displaystyle g(x)= f(x) - 8 =5x- \cos 2x - 8. Then, if \displaystyle g(c)= f(c) - 8 = 0, it follows that \displaystyle f(c) = 8.

By the Intermediate Value Theorem (IVT), if \displaystyle g(x) is a continuous function, and \displaystyle g(a) and \displaystyle g(b) are of unlike sign, then \displaystyle g(c) = 0 for some \displaystyle c \in (a, b). \displaystyle 5x and \displaystyle \cos 2x are both continuous everywhere, so \displaystyle g(x) is a continuous function, so the IVT applies here.

Evaluate \displaystyle g(x) for each of the following values: \displaystyle \left \{ 1.0, 1.1, 1.2, 1.3, 1.4, 1.5\right \}

 

\displaystyle g(1) =5 (1)- \cos 2 (1)- 8

\displaystyle =5 - \cos 2 - 8

\displaystyle \approx 5 - (-0.42) - 8

\displaystyle \approx -2.58

 

\displaystyle g(1.1) =5 (1.1)- \cos 2 (1.1)- 8

\displaystyle =5.5 - \cos 2.2 - 8

\displaystyle \approx 5.5 - (-0.59) - 8

\displaystyle \approx -1.91

 

\displaystyle g(1.2) =5 (1.2)- \cos 2 (1.2)- 8

\displaystyle =6 - \cos 2.4 - 8

\displaystyle \approx 6 - (-0.74) - 8

\displaystyle \approx -1.26

 

\displaystyle g(1.3) =5 (1.3)- \cos 2 (1.3)- 8

\displaystyle =6.5 - \cos 2.6 - 8

\displaystyle \approx 6.5 -(-0.86) - 8

\displaystyle \approx -0.64

 

\displaystyle g(1.4) =5 (1.4)- \cos 2 (1.4)- 8

\displaystyle =7 - \cos 2.8 - 8

\displaystyle \approx 7 - (-0.94) - 8

\displaystyle \approx -0.06

 

\displaystyle g(1.5) =5 (1.5)- \cos 2 (1.5)- 8

\displaystyle =7.5 - \cos 3 - 8

\displaystyle \approx 7.5 -(-0.99)- 8

\displaystyle \approx 0.49

 

Only in the case of \displaystyle (1.4, 1.5) does it hold that \displaystyle g (x) assumes a different sign at both endpoints - \displaystyle g(1.4) < 0 < g(1.5). By the IVT, \displaystyle g(c) = 0, and \displaystyle f(c) = 8, for some \displaystyle c\in (1.4, 1.5).

Example Question #241 : Sat Subject Test In Math I

Consider the absolute value equation

\displaystyle |x + 7| = 13

Which of the following quadratic equations has the same solution set as this one?

Possible Answers:

\displaystyle x^{2} - 14x - 120 = 0

\displaystyle x^{2} + 14x - 120 = 0

\displaystyle x^{2}- 120 = 0

\displaystyle x^{2} + 26x + 120 = 0

\displaystyle x^{2}- 26x + 120 = 0

Correct answer:

\displaystyle x^{2} + 14x - 120 = 0

Explanation:

The absolute value equation \displaystyle |x + 7| = 13 can be rewritten as the compound equation

\displaystyle x+ 7 =- 13   \displaystyle x+ 7 = 13

Each simple equation can be solved by subtracting 7 from both sides:

\displaystyle x+ 7 =- 13

\displaystyle x+ 7 - 7 =- 13 - 7

\displaystyle x = -20

 

\displaystyle x+ 7 = 13

\displaystyle x+ 7 - 7 = 13 - 7

\displaystyle x = 6

 

The absolute value equation has solution set \displaystyle \left \{ - 20 , 6 \right \}.

Suppose \displaystyle P(x) is a polynomial. Then, by the Factor Theorem, \displaystyle x - c is a factor of \displaystyle P(x) if and only if  \displaystyle P(c) = 0 - that is, if \displaystyle c is a solution of \displaystyle P(x) = 0. We are seeking a quadratic equation with solution set the same as that of the absolute value equation, \displaystyle \left \{ - 20 , 6 \right \}, we want polynomial \displaystyle P(x) to have as its linear binomial factors \displaystyle x- (-20), or \displaystyle x+ 20, and \displaystyle x - 6

The correct polynomial will be the product of these two:

\displaystyle P(x) = (x+20)(x-6)

Using the FOIL technique to rewrite this:

\displaystyle P(x) = x^{2}-6x + 20x - 120

\displaystyle P(x) = x^{2} + 14x - 120

The correct choice is the equation \displaystyle x^{2} + 14x - 120 = 0.

Example Question #81 : Single Variable Algebra

Give the set of all real solutions of the equation \displaystyle 8 x^{\frac{2}{3}} -2 x ^{\frac{1}{3}} - 3 = 0 .

Possible Answers:

\displaystyle \left \{ -\frac{27}{64} , -\frac{1}{8} , \frac{1}{8} , \frac{27}{64} \right \}

\displaystyle \left \{ - \frac{27}{64} , \frac{27}{64} \right \}

\displaystyle \left \{ - \frac{27}{64} , \frac{1}{8} \right \}

\displaystyle \left \{ -\frac{1}{8} , \frac{27}{64} \right \}

\displaystyle \left \{- \frac{1}{8} , \frac{1}{8} \right \}

Correct answer:

\displaystyle \left \{ -\frac{1}{8} , \frac{27}{64} \right \}

Explanation:

Set \displaystyle y = x^{\frac{1}{3}}. Then \displaystyle x^{\frac{2}{3}} = \left (x^{\frac{1}{3}} \right )^{2} = y ^{2}

\displaystyle 8 x^{\frac{2}{3}} -2 x ^{\frac{1}{3}} - 3 = 0 can be rewritten as

\displaystyle 8 \left (x^{\frac{1}{3}} \right )^{2} -2 x ^{\frac{1}{3}} - 3 = 0

Substituting \displaystyle y^{2} for \displaystyle x and \displaystyle y for \displaystyle x^{\frac{1}{3}}, the equation becomes 

\displaystyle 8y^{2} -2 y - 3 = 0,

a quadratic equation in \displaystyle y.

This can be solved using the \displaystyle ac method. We are looking for two integers whose sum is \displaystyle -2 and whose product is \displaystyle 8 (-3) = -24. Through some trial and error, the integers are found to be \displaystyle -6 and 4, so the above equation can be rewritten, and solved using grouping, as

\displaystyle 8y^{2}-6y + 4 y - 3 = 0

\displaystyle 2y ( 4 y - 3)+1 ( 4 y - 3) = 0

\displaystyle (2y +1) ( 4 y - 3) = 0

By the Zero Product Principle, one of these factors is equal to zero:

Either:

\displaystyle 2y + 1 = 0

\displaystyle 2y + 1 - 1 = 0 - 1

\displaystyle 2y = - 1

\displaystyle \frac{2y}{2} = \frac{- 1}{2}

\displaystyle y = - \frac{1}{2}

Substituting back:

\displaystyle x^{\frac{1}{3}} = -\frac{1}{2}, or \displaystyle \sqrt[3]{x} = - \frac{1}{2}

 

Cubing both sides:

\displaystyle (\sqrt[3]{x} )^{3} = \left ( - \frac{1}{2} \right )^{3}

\displaystyle x = -\frac{1}{8}

 

Or:

\displaystyle 4y - 3 = 0

\displaystyle 4y - 3+ 3 = 0+ 3

\displaystyle 4 y = 3

\displaystyle \frac{4 y}{4} = \frac{3}{4}

\displaystyle y= \frac{3}{4}

Substituting back:

\displaystyle x^{\frac{1}{3}} = \frac{3}{4}, or \displaystyle \sqrt[3]{x} = \frac{3}{4}

Cubing both sides:

\displaystyle (\sqrt[3]{x} )^{3} = \left (\frac{3}{4} \right )^{3}

\displaystyle x = \frac{27}{64}.

The solution set is \displaystyle \left \{ -\frac{1}{8} , \frac{27}{64} \right \}.

Example Question #81 : Single Variable Algebra

Give the set of all real solutions of the equation \displaystyle 8x^{4} - 2x^{2} - 3 = 0.

Possible Answers:

\displaystyle \left \{ -\frac{\sqrt{2}}{2} ,\frac{\sqrt{2}}{2} \right \}

\displaystyle \left \{ -\frac{\sqrt{2}}{2} , \frac{\sqrt{3}}{2} \right \}

\displaystyle \left \{ -\frac{\sqrt{3}}{2} , \frac{\sqrt{3}}{2} \right \}

\displaystyle \left \{ -\frac{\sqrt{3}}{2} , \frac{\sqrt{2}}{2} \right \}

\displaystyle \left \{ -\frac{\sqrt{3}}{2}, -\frac{\sqrt{2}}{2} ,\frac{\sqrt{2}}{2} , \frac{\sqrt{3}}{2} \right \}

Correct answer:

\displaystyle \left \{ -\frac{\sqrt{3}}{2} , \frac{\sqrt{3}}{2} \right \}

Explanation:

Set \displaystyle y = x^{2}. Then \displaystyle x^{4 } = \left (x^{2} \right )^{2} = y ^{2}

\displaystyle 8x^{4} - 2x^{2} - 3 = 0 can be rewritten as

\displaystyle 8 \left (x^{2} \right )^{2} -2 x ^{2} - 3 = 0

Substituting \displaystyle y^{2} for \displaystyle x^{4 } and \displaystyle y for \displaystyle x^{2}, the equation becomes 

\displaystyle 8y^{2} -2 y - 3 = 0,

a quadratic equation in \displaystyle y.

This can be solved using the \displaystyle ac method. We are looking for two integers whose sum is \displaystyle -2 and whose product is \displaystyle 8 (-3) = -24. Through some trial and error, the integers are found to be \displaystyle -6 and 4, so the above equation can be rewritten, and solved using grouping, as

\displaystyle 8y^{2}-6y + 4 y - 3 = 0

\displaystyle 2y ( 4 y - 3)+1 ( 4 y - 3) = 0

\displaystyle (2y +1) ( 4 y - 3) = 0

By the Zero Product Principle, one of these factors is equal to zero:

Either:

\displaystyle 2y + 1 = 0

\displaystyle 2y + 1 - 1 = 0 - 1

\displaystyle 2y = - 1

\displaystyle \frac{2y}{2} = \frac{- 1}{2}

\displaystyle y = - \frac{1}{2}

Substituting back:

\displaystyle x ^{2}= - \frac{1}{2}

 

However, there are no real numbers whose squares are negative. Since we are looking only for real solutions, none are yielded here.

 

Or:

\displaystyle 4y - 3 = 0

\displaystyle 4y - 3+ 3 = 0+ 3

\displaystyle 4 y = 3

\displaystyle \frac{4 y}{4} = \frac{3}{4}

\displaystyle y= \frac{3}{4}

Substituting back:

\displaystyle x^{2} = \frac{3}{4}

Taking both square roots of both sides and simplifying using the Quotient of Radicals Rule:

\displaystyle x = \pm \sqrt{ \frac{3}{4}} = \pm \frac{\sqrt{3}}{\sqrt{4}} = \pm \frac{\sqrt{3}}{2}

The solution set is \displaystyle \left \{ -\frac{\sqrt{3}}{2} , \frac{\sqrt{3}}{2} \right \}.

Example Question #81 : Single Variable Algebra

Define a function \displaystyle f(x) = x^{3}+3x.

\displaystyle f(c) = -22 for exactly one value of \displaystyle c on the interval \displaystyle (-2.5, -2.0). Which of the following is true of \displaystyle c

Possible Answers:

\displaystyle c \in ( -2.1, -2.0)

\displaystyle c \in (-2.5, -2.4)

\displaystyle c \in ( -2.4, -2.3)

\displaystyle c \in ( -2.2, -2.1)

\displaystyle c \in ( - 2.3, -2.2)

Correct answer:

\displaystyle c \in (-2.5, -2.4)

Explanation:

Define \displaystyle g(x) = f(x) + 22 = x^{3}+3x+ 22. Then, if \displaystyle g(c)= f(c)+22 = 0, it follows that \displaystyle f(c) = -22.

By the Intermediate Value Theorem (IVT), if \displaystyle g(x) is a continuous function, and \displaystyle g(a) and \displaystyle g(b) are of unlike sign, then \displaystyle g(c) = 0 for some \displaystyle c \in (a, b). As a polynomial, \displaystyle g(x) is a continuous function, so the IVT applies here. 

Evaluate \displaystyle g(x) for each of the following values: \displaystyle \left \{ -2.5, -2.4, -2.3, -2.2, -2.1, -2.0 \right \}:

\displaystyle g(-2.5) = (-2.5)^{3}+3(-2.5)+ 22 =-1.125

\displaystyle g(-2.4) = (-2.4)^{3}+3(-2.4)+ 22 =0.976

\displaystyle g(-2.3) = (-2.3)^{3}+3(-2.3)+ 22 =2.933

\displaystyle g(-2.2) = (-2.2)^{3}+3(-2.2)+ 22 =4.752

\displaystyle g(-2.1) = (-2.1)^{3}+3(-2.1)+ 22 =6.439

\displaystyle g(-2.0) = (-2.0)^{3}+3(-2.0)+ 22 =8

Only in the case of \displaystyle (-2.5, -2.4) does it hold that \displaystyle g (x) assumes different signs at the endpoints - \displaystyle g(-2.5) < 0 < g(2.4). By the IVT, \displaystyle g(c) = 0, and \displaystyle f(c) = -22, for some \displaystyle c \in (-2.5, -2.4).

Example Question #81 : Single Variable Algebra

Solve:  \displaystyle 3x+18 = -3

Possible Answers:

\displaystyle 7

\displaystyle -7

\displaystyle -5

\displaystyle 5

\displaystyle -1

Correct answer:

\displaystyle -7

Explanation:

Subtract 18 on both sides.

\displaystyle 3x+18 -18= -3-18

\displaystyle 3x=-21

Divide by three on both sides.

\displaystyle \frac{3x}{3}=\frac{-21}{3}

The answer is:  \displaystyle -7

Example Question #241 : Sat Subject Test In Math I

Solve the equation:  \displaystyle -9x+7 = -16

Possible Answers:

\displaystyle -1

\displaystyle \frac{11}{9}

\displaystyle -\frac{23}{9}

\displaystyle \frac{23}{9}

\displaystyle 1

Correct answer:

\displaystyle \frac{23}{9}

Explanation:

Subtract seven from both sides.

\displaystyle -9x+7-7 = -16-7

\displaystyle -9x = -23

Divide both sides by negative nine.

\displaystyle \frac{-9x}{-9} =\frac{ -23}{-9}

The answer is:  \displaystyle \frac{23}{9}

Example Question #91 : Single Variable Algebra

Solve the equation:  \displaystyle -2x+4 = 18-x

Possible Answers:

\displaystyle \frac{14}{3}

\displaystyle \frac{22}{3}

\displaystyle -\frac{14}{3}

\displaystyle -14

\displaystyle 22

Correct answer:

\displaystyle -14

Explanation:

Add \displaystyle 2x on both sides of the equation.

\displaystyle -2x+4 +2x= 18-x+2x

\displaystyle 4=18+x

Subtract 18 on both sides of the equation.

\displaystyle 4-18=18+x-18

\displaystyle x=-14

The answer is:  \displaystyle -14

Example Question #91 : Single Variable Algebra

Solve the following equation:  \displaystyle \frac{2}{3x}+4 = \frac{5}{6x}

Possible Answers:

\displaystyle \frac{1}{12}

\displaystyle \frac{5}{48}

\displaystyle \frac{5}{8}

\displaystyle \frac{1}{24}

\displaystyle \frac{1}{36}

Correct answer:

\displaystyle \frac{1}{24}

Explanation:

Multiply both sides by the least common denominator \displaystyle 6x.  This will eliminate the fractions on both sides of the equation.

\displaystyle 6x(\frac{2}{3x}+4 )= \frac{5}{6x}\cdot 6x

\displaystyle 4+24x = 5

Subtract 4 on both sides.

\displaystyle 4+24x -4= 5-4

\displaystyle 24x=1

Divide by 24 on both sides.

\displaystyle \frac{24x}{24}=\frac{1}{24}

The answer is:  \displaystyle \frac{1}{24}

Example Question #91 : Single Variable Algebra

 \displaystyle p(x)  \displaystyle x^{3} 

\displaystyle p(3) = p(5) = 0

Possible Answers:

\displaystyle p(x)= x^{3} - 11x^{2}+39 x-45

\displaystyle p(x)= x^{3} - 13x^{2}+55 x-75

\displaystyle p(x)= x^{3} - 3x^{2}- 25 x+75

\displaystyle p(x)= x^{3} - 5x^{2}- 9x+45

Correct answer:

Explanation:

A cubic polynomial has three zeroes, if a zero of multiplicity \displaystyle n is counted \displaystyle n times. Since its lead term is \displaystyle x^{3}, we know that

\displaystyle p(x) = (x-b_{1}) (x-b_{2}) (x-b_{3})

where \displaystyle b_{1}\displaystyle b_{2}, and \displaystyle b_{3} are its zeroes.

 \displaystyle p(3) = p(5) = 0, so 3 and 5 are zeroes of \displaystyle p(x), and, by the Factor Theorem, \displaystyle x-3 and \displaystyle x-5 are among the linear factors - that is,

\displaystyle p(x) = (x- 3) (x-5) (x-b_{3})

for some \displaystyle b_{3}.

However, we are not given the multiplicity of either 3 or 5, so we do not know which, if either, of the two are equal to \displaystyle b_{3}. Without this information, we cannot determine \displaystyle p(x) for certain.

Learning Tools by Varsity Tutors