PSAT Critical Reading : Drawing Evidence from Natural Science Passages

Study concepts, example questions & explanations for PSAT Critical Reading

varsity tutors app store varsity tutors android store

Example Questions

Example Question #106 : Natural Science Passages

Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)

The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!

The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.

The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!

The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.

At the time the passage was written, in which of the following states was the gypsy moth NOT found?

Possible Answers:

New Hampshire

Massachusetts

Rhode Island

Connecticut

New York

Correct answer:

New York

Explanation:

The part of the passage most relevant to this question is found in the last paragraph:

“The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date.”

We can tell that “New York” is the answer based on this quotation, but one state remains unaccounted for: Massachusetts. Earlier in the passage, we are told that the gypsy moth “was imported at Maiden, Massachusetts, near Boston,” and that “enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts.” We can infer that the gypsy moth is found in Massachusetts at the time the passage was written, especially given that the author writes, “In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!” This quotation—especially the author’s use of the transition “Up to this date”—suggests that the gypsy moth remained a problem in Massachusetts at the time the author was writing.

Example Question #1 : Distinguishing Between Fact And Fiction In Natural Science Passages

"Interpreting the Copernican Revolution" by Matthew Minerd (2014)

The expressions of one discipline can often alter the way that other subjects understand themselves. Among such cases are numbered the investigations of Nicolaus Copernicus. Copernicus is best known for his views concerning heliocentrism, a view which eventually obliterated many aspects of the ancient/medieval worldview, at least from the standpoint of physical science. It had always been the natural view of mankind that the earth stood at the center of the universe, a fixed point in reference to the rest of the visible bodies. The sun, stars, and planets all rotated around the earth.

With time, this viewpoint became one of the major reference points for modern life. It provided a provocative image that was used—and often abused—by many people for various purposes. For those who wished to weaken the control of religion on mankind, it was said that the heliocentric outlook proved man’s insignificance. In contrast with earlier geocentrism, heliocentrism was said to show that man is not the center of the universe. He is merely one small being in the midst of a large cosmos. However, others wished to use the “Copernican Revolution” in a very different manner. These thinkers wanted to show that there was another “recentering” that had to happen. Once upon a time, we talked about the world. Now, however, it was necessary to talk of man as the central reference point. Just as the solar system was “centered” on the sun, so too should the sciences be centered on the human person.

However, both of these approaches are fraught with problems. Those who wished to undermine the religious mindset rather misunderstood the former outlook on the solar system. The earlier geocentric mindset did not believe that the earth was the most important body in the heavens. Instead, many ancient and medieval thinkers believed that the highest “sphere” above the earth was the most important being in the physical universe. Likewise, the so-called “Copernican Revolution” in physics was different from the one applied to the human person. Copernicus’ revolution showed that the human point of view was not the center, whereas the later forms of “Copernican revolution” wished to show just the opposite.

Of course, there are many complexities in the history of such important changes in scientific outlook. Nevertheless, it is fascinating to see the wide-reaching effects of such discoveries, even when they have numerous, ambiguous effects.

How was the underlined view about geocentrism incorrect?

Possible Answers:

Religions gladly accepted the point and moved on.

Many earlier thinkers actually thought the earth was rather insignificant compared with the other celestial bodies.

None of the other answers

Religion had always despised human existence anyway, so this is not much of a change.

The view is actually reflective of the history of thought and does not contradict it.

Correct answer:

Many earlier thinkers actually thought the earth was rather insignificant compared with the other celestial bodies.

Explanation:

For this question, the key two sentences are: "The earlier geocentric mindset did not believe that the earth was the most important body in the heavens. Instead, many ancient and medieval thinkers believed that the highest 'sphere' above the earth was the most important being in the physical universe." These state that geocentric thinkers in the ancient and medieval period actually believed that the higher "spheres" of heaven were more important than earth.

Example Question #107 : Natural Science Passages

"The Cell Cycle" by Joseph Ritchie (2014)

The process by which cells divide and multiply is known as the cell cycle. This cycle consists of two main phases: interphase and mitosis. Each phase consists of a series of clearly defined and observable steps. At the conclusion of the cycle, each parent cell produces two genetically identical daughter cells that may also replicate by proceeding through the cell cycle.

Roughly ninety percent of the cell cycle is spent in interphase. Interphase is comprised of three main steps: the first gap phase, the synthesis phase (also called "S phase"), and the second gap phase. The initial gap phase is a period of cellular preparation in which the cell increases in size and readies itself for DNA synthesis. In the synthesis phase, or S phase, DNA replication occurs, so that when the cell divides, each daughter cell will have the DNA necessary to function properly. In the second gap phase, the cell grows in size and prepares for cellular division in the mitotic phase. At the end of each gap phase, the cell has to pass a regulatory checkpoint to ensure that nothing is going wrong. If anything has gone wrong, the checkpoints stop the cell from proceeding through the cell cycle any further.

The next part of the cell cycle is mitosis. Mitosis is a form of cell division and is broken down into five distinct phases. During prophase, the genetic material contained in the cell’s chromatin condenses into distinct chromosomes. Prometaphase is marked by the breakdown of the cell’s nuclear envelope and the formation of centrosomes at the poles of the cell. During metaphase, the cell’s chromosomes are moved to the center of the cell. A checkpoint ensures that the chromosomes are properly aligned on the center and halts the cell cycle if any errors have occurred. In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell. Lastly, telophase and cytokinesis occur as nuclear membranes form to physically divide the cell into two new daughter cells. Chromosomes also unwind into loose chromatin during this part of mitosis. Cytokinesis is defined as the division of the each cell’s cytoplasm and organelles. At the conclusion of the cell cycle, two genetically identical daughter cells have formed.

The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous. Lastly, cells have the ability to mediate their own death by way of apoptosis if certain genetic or physical abnormalities exist. The cell cycle is a complex process that enables cells to replicate and proliferate under a stringent set of checks and balances that produce healthy and viable daughter cells that are each able to perform the process in the future.

To where are chromosomes moved in the cell during metaphase?

Possible Answers:

The edges of the cell

The center of the cell

The poles of the cell

Outside of the cell

Correct answer:

The center of the cell

Explanation:

Chromosomes are moved to the center of the cell during metaphase. This is supported by the passage in the third paragraph, when it states, "During metaphase, the cell’s chromosomes are moved to the center of the cell."

Example Question #21 : Drawing Evidence From Natural Science Passages

"The Cell Cycle" by Joseph Ritchie (2014)

The process by which cells divide and multiply is known as the cell cycle. This cycle consists of two main phases: interphase and mitosis. Each phase consists of a series of clearly defined and observable steps. At the conclusion of the cycle, each parent cell produces two genetically identical daughter cells that may also replicate by proceeding through the cell cycle.

Roughly ninety percent of the cell cycle is spent in interphase. Interphase is comprised of three main steps: the first gap phase, the synthesis phase (also called "S phase"), and the second gap phase. The initial gap phase is a period of cellular preparation in which the cell increases in size and readies itself for DNA synthesis. In the synthesis phase, or S phase, DNA replication occurs, so that when the cell divides, each daughter cell will have the DNA necessary to function properly. In the second gap phase, the cell grows in size and prepares for cellular division in the mitotic phase. At the end of each gap phase, the cell has to pass a regulatory checkpoint to ensure that nothing is going wrong. If anything has gone wrong, the checkpoints stop the cell from proceeding through the cell cycle any further.

The next part of the cell cycle is mitosis. Mitosis is a form of cell division and is broken down into five distinct phases. During prophase, the genetic material contained in the cell’s chromatin condenses into distinct chromosomes. Prometaphase is marked by the breakdown of the cell’s nuclear envelope and the formation of centrosomes at the poles of the cell. During metaphase, the cell’s chromosomes are moved to the center of the cell. A checkpoint ensures that the chromosomes are properly aligned on the center and halts the cell cycle if any errors have occurred. In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell. Lastly, telophase and cytokinesis occur as nuclear membranes form to physically divide the cell into two new daughter cells. Chromosomes also unwind into loose chromatin during this part of mitosis. Cytokinesis is defined as the division of the each cell’s cytoplasm and organelles. At the conclusion of the cell cycle, two genetically identical daughter cells have formed.

The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous. Lastly, cells have the ability to mediate their own death by way of apoptosis if certain genetic or physical abnormalities exist. The cell cycle is a complex process that enables cells to replicate and proliferate under a stringent set of checks and balances that produce healthy and viable daughter cells that are each able to perform the process in the future.

How many checkpoints are present in the cell cycle?

Possible Answers:

Four

Two

Three

Five

Correct answer:

Three

Explanation:

There are three checkpoints in the cell cycle. Two are located in interphase, as the passage says in paragraph two: "At the end of each gap phase the cell has to pass two regulatory checkpoints to ensure proper cell growth and environmental conditions." Another checkpoint is present in mitosis, according to paragraph three: "A checkpoint ensures that the chromosomes are aligned on the center and halts the cycle if an error occurs."

Example Question #22 : Drawing Evidence From Natural Science Passages

"The Cell Cycle" by Joseph Ritchie (2014)

The process by which cells divide and multiply is known as the cell cycle. This cycle consists of two main phases: interphase and mitosis. Each phase consists of a series of clearly defined and observable steps. At the conclusion of the cycle, each parent cell produces two genetically identical daughter cells that may also replicate by proceeding through the cell cycle.

Roughly ninety percent of the cell cycle is spent in interphase. Interphase is comprised of three main steps: the first gap phase, the synthesis phase, and the second gap phase. The initial gap phase is a period of cellular preparation in which the cell increases in size and readies itself for DNA synthesis. In the synthesis phase, DNA replication occurs, so that when the cell divides, each daughter cell will have the DNA necessary to function properly. In the second gap phase, the cell grows in size and prepares for cellular division in the mitotic phase. At the end of each gap phase, the cell has to pass a regulatory checkpoint to ensure that nothing is going wrong. If anything has gone wrong, the checkpoints stop the cell from proceeding through the cell cycle any further.

The next part of the cell cycle is mitosis. Mitosis is a form of cell division and is broken down into five distinct phases. During prophase, the genetic material contained in the cell’s chromatin condenses into distinct chromosomes. Prometaphase is marked by the breakdown of the cell’s nuclear envelope and the formation of centrosomes at the poles of the cell. During metaphase, the cell’s chromosomes are moved to the center of the cell. A checkpoint ensures that the chromosomes are properly aligned on the center and halts the cell cycle if any errors have occurred. In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell. Lastly, telophase and cytokinesis occur as nuclear membranes form to physically divide the cell into two new daughter cells. Chromosomes also unwind into loose chromatin during this part of mitosis. Cytokinesis is defined as the division of the each cell’s cytoplasm and organelles. At the conclusion of the cell cycle, two genetically identical daughter cells have formed.

The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous. Lastly, cells have the ability to mediate their own death by way of apoptosis if certain genetic or physical abnormalities exist. The cell cycle is a complex process that enables cells to replicate and proliferate under a stringent set of checks and balances that produce healthy and viable daughter cells that are each able to perform the process in the future.

Which of the following is a characteristic of a cancerous cell?

Possible Answers:

It divides uncontrollably.

It spends much more time in interphase than do other cells.

It prevents other cells from moving past the checkpoints in the cell cycle.

Its chromatin does not condense into chromosomes.

Correct answer:

It divides uncontrollably.

Explanation:

Cancerous cells divide uncontrollably. This information is conveyed in the last paragraph, when the passage says, "The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous." From this part of the passage, we can tell that a cell "in a state of uncontrolled division" is cancerous.

Example Question #113 : Natural Science Passages

"The Cell Cycle" by Joseph Ritchie (2014)

The process by which cells divide and multiply is known as the cell cycle. This cycle consists of two main phases: interphase and mitosis. Each phase consists of a series of clearly defined and observable steps. At the conclusion of the cycle, each parent cell produces two genetically identical daughter cells that may also replicate by proceeding through the cell cycle.

Roughly ninety percent of the cell cycle is spent in interphase. Interphase is comprised of three main steps: the first gap phase, the synthesis phase (also called "S phase"), and the second gap phase. The initial gap phase is a period of cellular preparation in which the cell increases in size and readies itself for DNA synthesis. In the synthesis phase, or S phase, DNA replication occurs, so that when the cell divides, each daughter cell will have the DNA necessary to function properly. In the second gap phase, the cell grows in size and prepares for cellular division in the mitotic phase. At the end of each gap phase, the cell has to pass a regulatory checkpoint to ensure that nothing is going wrong. If anything has gone wrong, the checkpoints stop the cell from proceeding through the cell cycle any further.

The next part of the cell cycle is mitosis. Mitosis is a form of cell division and is broken down into five distinct phases. During prophase, the genetic material contained in the cell’s chromatin condenses into distinct chromosomes. Prometaphase is marked by the breakdown of the cell’s nuclear envelope and the formation of centrosomes at the poles of the cell. During metaphase, the cell’s chromosomes are moved to the center of the cell. A checkpoint ensures that the chromosomes are properly aligned on the center and halts the cell cycle if any errors have occurred. In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell. Lastly, telophase and cytokinesis occur as nuclear membranes form to physically divide the cell into two new daughter cells. Chromosomes also unwind into loose chromatin during this part of mitosis. Cytokinesis is defined as the division of the each cell’s cytoplasm and organelles. At the conclusion of the cell cycle, two genetically identical daughter cells have formed.

The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous. Lastly, cells have the ability to mediate their own death by way of apoptosis if certain genetic or physical abnormalities exist. The cell cycle is a complex process that enables cells to replicate and proliferate under a stringent set of checks and balances that produce healthy and viable daughter cells that are each able to perform the process in the future.

During anaphase, chromosomes break apart into __________.

Possible Answers:

Sister chromatids

Chromatin

Nuclear membranes

Centromeres

Correct answer:

Sister chromatids

Explanation:

In the third paragraph, the passage states, "In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell," so chromosomes break apart into sister chromatids.

Example Question #51 : Understanding The Content Of Natural Science Passages

"The Cell Cycle" by Joseph Ritchie (2014)

The process by which cells divide and multiply is known as the cell cycle. This cycle consists of two main phases: interphase and mitosis. Each phase consists of a series of clearly defined and observable steps. At the conclusion of the cycle, each parent cell produces two genetically identical daughter cells that may also replicate by proceeding through the cell cycle.

Roughly ninety percent of the cell cycle is spent in interphase. Interphase is comprised of three main steps: the first gap phase, the synthesis phase (also called "S phase"), and the second gap phase. The initial gap phase is a period of cellular preparation in which the cell increases in size and readies itself for DNA synthesis. In the synthesis phase, or S phase, DNA replication occurs, so that when the cell divides, each daughter cell will have the DNA necessary to function properly. In the second gap phase, the cell grows in size and prepares for cellular division in the mitotic phase. At the end of each gap phase, the cell has to pass a regulatory checkpoint to ensure that nothing is going wrong. If anything has gone wrong, the checkpoints stop the cell from proceeding through the cell cycle any further.

The next part of the cell cycle is mitosis. Mitosis is a form of cell division and is broken down into five distinct phases. During prophase, the genetic material contained in the cell’s chromatin condenses into distinct chromosomes. Prometaphase is marked by the breakdown of the cell’s nuclear envelope and the formation of centrosomes at the poles of the cell. During metaphase, the cell’s chromosomes are moved to the center of the cell. A checkpoint ensures that the chromosomes are properly aligned on the center and halts the cell cycle if any errors have occurred. In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell. Lastly, telophase and cytokinesis occur as nuclear membranes form to physically divide the cell into two new daughter cells. Chromosomes also unwind into loose chromatin during this part of mitosis. Cytokinesis is defined as the division of the each cell’s cytoplasm and organelles. At the conclusion of the cell cycle, two genetically identical daughter cells have formed.

The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous. Lastly, cells have the ability to mediate their own death by way of apoptosis if certain genetic or physical abnormalities exist. The cell cycle is a complex process that enables cells to replicate and proliferate under a stringent set of checks and balances that produce healthy and viable daughter cells that are each able to perform the process in the future.

What are the products of interphase and mitosis?

Possible Answers:

Four genetically identical gametes

Two genetically different daughter cells

Two genetically identical daughter cells

Four genetically similar gametes

Correct answer:

Two genetically identical daughter cells

Explanation:

The passage states multiple times that the products of the cell cycle are two genetically identical daughter cells. Gametes are sex cells generated in a different cellular process called meiosis; they are not mentioned in the passage and the answer choices that refer to them are each incorrect.

Example Question #114 : Natural Science Passages

"The Cell Cycle" by Joseph Ritchie (2014)

The process by which cells divide and multiply is known as the cell cycle. This cycle consists of two main phases: interphase and mitosis. Each phase consists of a series of clearly defined and observable steps. At the conclusion of the cycle, each parent cell produces two genetically identical daughter cells that may also replicate by proceeding through the cell cycle.

Roughly ninety percent of the cell cycle is spent in interphase. Interphase is comprised of three main steps: the first gap phase, the synthesis phase (also called "S phase"), and the second gap phase. The initial gap phase is a period of cellular preparation in which the cell increases in size and readies itself for DNA synthesis. In the synthesis phase, or S phase, DNA replication occurs, so that when the cell divides, each daughter cell will have the DNA necessary to function properly. In the second gap phase, the cell grows in size and prepares for cellular division in the mitotic phase. At the end of each gap phase, the cell has to pass a regulatory checkpoint to ensure that nothing is going wrong. If anything has gone wrong, the checkpoints stop the cell from proceeding through the cell cycle any further.

The next part of the cell cycle is mitosis. Mitosis is a form of cell division and is broken down into five distinct phases. During prophase, the genetic material contained in the cell’s chromatin condenses into distinct chromosomes. Prometaphase is marked by the breakdown of the cell’s nuclear envelope and the formation of centrosomes at the poles of the cell. During metaphase, the cell’s chromosomes are moved to the center of the cell. A checkpoint ensures that the chromosomes are properly aligned on the center and halts the cell cycle if any errors have occurred. In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell. Lastly, telophase and cytokinesis occur as nuclear membranes form to physically divide the cell into two new daughter cells. Chromosomes also unwind into loose chromatin during this part of mitosis. Cytokinesis is defined as the division of the each cell’s cytoplasm and organelles. At the conclusion of the cell cycle, two genetically identical daughter cells have formed.

The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous. Lastly, cells have the ability to mediate their own death by way of apoptosis if certain genetic or physical abnormalities exist. The cell cycle is a complex process that enables cells to replicate and proliferate under a stringent set of checks and balances that produce healthy and viable daughter cells that are each able to perform the process in the future.

When will a cell enter the gap zero phase?

Possible Answers:

Only when it is about to go through apoptosis 

When it needs to move through the cell cycle more quickly

Cells are always in gap zero phase

When conditions or other factors inhibit the cell cycle

Correct answer:

When conditions or other factors inhibit the cell cycle

Explanation:

The last paragraph begins, "The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle." So, the correct answer is "when conditions or other factors inhibit the cell cycle."

Example Question #23 : Drawing Evidence From Natural Science Passages

"The Cell Cycle" by Joseph Ritchie (2014)

The process by which cells divide and multiply is known as the cell cycle. This cycle consists of two main phases: interphase and mitosis. Each phase consists of a series of clearly defined and observable steps. At the conclusion of the cycle, each parent cell produces two genetically identical daughter cells that may also replicate by proceeding through the cell cycle.

Roughly ninety percent of the cell cycle is spent in interphase. Interphase is comprised of three main steps: the first gap phase, the synthesis phase (also called "S phase"), and the second gap phase. The initial gap phase is a period of cellular preparation in which the cell increases in size and readies itself for DNA synthesis. In the synthesis phase, or S phase, DNA replication occurs, so that when the cell divides, each daughter cell will have the DNA necessary to function properly. In the second gap phase, the cell grows in size and prepares for cellular division in the mitotic phase. At the end of each gap phase, the cell has to pass a regulatory checkpoint to ensure that nothing is going wrong. If anything has gone wrong, the checkpoints stop the cell from proceeding through the cell cycle any further.

The next part of the cell cycle is mitosis. Mitosis is a form of cell division and is broken down into five distinct phases. During prophase, the genetic material contained in the cell’s chromatin condenses into distinct chromosomes. Prometaphase is marked by the breakdown of the cell’s nuclear envelope and the formation of centrosomes at the poles of the cell. During metaphase, the cell’s chromosomes are moved to the center of the cell. A checkpoint ensures that the chromosomes are properly aligned on the center and halts the cell cycle if any errors have occurred. In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell. Lastly, telophase and cytokinesis occur as nuclear membranes form to physically divide the cell into two new daughter cells. Chromosomes also unwind into loose chromatin during this part of mitosis. Cytokinesis is defined as the division of the each cell’s cytoplasm and organelles. At the conclusion of the cell cycle, two genetically identical daughter cells have formed.

The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous. Lastly, cells have the ability to mediate their own death by way of apoptosis if certain genetic or physical abnormalities exist. The cell cycle is a complex process that enables cells to replicate and proliferate under a stringent set of checks and balances that produce healthy and viable daughter cells that are each able to perform the process in the future.

What is the purpose of interphase?

Possible Answers:

The purpose of interphase is to promote cellular growth and preparation for division.

The purpose of interphase is to produce replicated and synthesized DNA for cell division.

The purpose of interphase is to prepare and check environmental conditions to ensure successful cellular division.

All of the choices are correct.

Correct answer:

All of the choices are correct.

Explanation:

Interphase is the stage of the cell cycle that prepares the cell for mitosis, produces replicated and synthesized DNA for cell division, and checks the environment for a successful division. The second paragraph explains this in detail. Ninety percent of the cycle is spent in interphase because it is very important in order to determine the success of division. Interphase does all these things and more. 

Example Question #1 : Locating Details In Narrative Science Passages

Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)

The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.

Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue. 

The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.

A stoat might also be called __________.

Possible Answers:

a weasel, depending on its fur color

a weasel, depending on what it eats

an ermine, depending on where it lives

an ermine, depending on its fur color

a weasel, depending on where it lives

Correct answer:

an ermine, depending on its fur color

Explanation:

The passage’s last paragraph provides the information we need to answer this question.  The paragraph begins by describing “the common stoat.” Eventually, it says, “But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine.” While this sentence is followed by “A similar example is afforded by the weasel,” this means that the weasel is another example of an animal that changes its fur color, not that a stoat can be called a weasel. It means that a weasel is a distinct type of animal. The correct answer is that a stoat might also be called “an ermine, depending on its fur color.”

Learning Tools by Varsity Tutors