MCAT Physical : Electricity and Magnetism

Study concepts, example questions & explanations for MCAT Physical

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Resistors And Resistance

During the cold winter months, some gloves have the ability to provide extra warmth due to an internal heating source. A simplified circuit, similar to those in electric gloves, is comprised of a 9V battery with no internal resistance and three resistors as shown in the image below. 

Screen_shot_2013-10-09_at_11.08.15_pm

What is the net resistance of the circuit?

Possible Answers:

Correct answer:

Explanation:

First we need to combine the resistors in parallel.

 

By taking the inverse of the equation, we can see that RA4 is equal to 2Ω.

Now that we have simplified the two resistors in parallel, we need to determine how the Req of the two parallel resistors and the resistance due to R1 are arranged. We can see that these resistors are now in series, thus we can directly add their resistances together to get the overall resistance of the circuit.

Req = RA4 + R1 = 2Ω + 2Ω = 4Ω

Remember as a general rule, the equivalent resistance of resistors in series is an arithmetic sum of their individual resistances.

Example Question #21 : Circuits

During the cold winter months, some gloves have the ability to provide extra warmth due to an internal heating source. A simplified circuit, similar to those in electric gloves, is comprised of a 9 V battery with no internal resistance and three resistors as shown in the image below. 

Screen_shot_2013-10-09_at_11.08.15_pm

All resistors in series share the same __________, while all resistors in parallel share the same __________.

Possible Answers:

current . . . voltage

voltage . . . current

potential energy . . . voltage

current . . . potential energy

Correct answer:

current . . . voltage

Explanation:

As a common rule to all circuits, all resistors in series share the same current (due to conservation of charge) and all resistors in parallel share the same voltage. This information is very helpful in determining the voltage drops across sets of resistors and the current that flows through them.

Example Question #62 : Electricity And Magnetism

What is the internal resistance of a  battery that has a potential of  when a  current runs through it?

Possible Answers:

Correct answer:

Explanation:

The equation for a battery with internal resistance is 

Using this equation, we can solve for the resistance.

Example Question #11 : Resistors And Resistance

 battery is connected to a circuit which contains two  resistors connected in parallel. What is the current throughout the circuit?

Possible Answers:

Correct answer:

Explanation:

We know the total voltage in the circuit is . We need to determine the total resistance within the circuit. Since we know there are two resistors connected in parallel we use the following formula:

Two resistors with resistances of  each:

Now we use another formula to determine the current using voltage and resistance:

Rearranged to:

Example Question #1 : Current

During the cold winter months, some gloves have the ability to provide extra warmth due to an internal heating source. A simplified circuit, similar to those in electric gloves, is comprised of a 9 V battery with no internal resistance and three resistors as shown in the image below. 

Screen_shot_2013-10-09_at_11.08.15_pm

What direction do electrons flow through the circuit?

Possible Answers:

Cannot be determined

Counterclockwise

Clockwise

Correct answer:

Counterclockwise

Explanation:

Remember that convention dictates that current flows in the direction of positive charge (protons), thus, electrons flow in the opposite direction. Also remember that the larger length on the battery symbol on the circuit diagram indicates that current flows in this direction. In the diagram below, we can see that current flows clockwise, thus electrons flow counterclockwise.

Screen_shot_2013-10-09_at_11.11.43_pm

Example Question #63 : Electricity And Magnetism

Batteries and AC current are often used to charge a capacitor. A common example of capacitor use is in computer hard drives, where capacitors are charged in a specific pattern to code information. A simplified circuit with capacitors can be seen below. The capacitance of C1 is 0.5 μF and the capacitances of C2 and C3 are 1 μF each. A 10 V battery with an internal resistance of 1 Ω supplies the circuit.

Pretext Question_2

What direction is current flowing through the circuit?

Possible Answers:

Cannot be determined

Counterclockwise

Clockwise

Correct answer:

Counterclockwise

Explanation:

Remember that convention dictates that current flows in the direction of positive charge (protons). Also remember that the larger length on the battery symbol on the circuit diagram indicates that current flows in this direction. In the diagram below, we can see that current flows counterclockwise.

Current_direction

Example Question #41 : Ap Physics 2

During the cold winter months, some gloves have the ability to provide extra warmth due to an internal heating source. A simplified circuit, similar to those in electric gloves, is comprised of a 9V battery with no internal resistance and three resistors as shown in the image below. 

Screen_shot_2013-10-09_at_11.08.15_pm

How much current flows through resistor R4?

Possible Answers:

Correct answer:

Explanation:

First, we need to determine the voltage drop across R4. Given that RA and R4 are in parallel, we know that the voltage drop across each is the same.

The voltage drop across R1 can be calculated using the Icircuit (all the current generated by the battery’s potential difference must pass through R1 because it is in direct series with the battery), and the resistance of the resistor.

I can be calculated by V = IR because we have the voltage drop across the circuit (9 V) and can calculate the equivalent resistance:

By taking the inverse of the equation, we can see that RA4 is equal to 2Ω.

Req = RA4 + R1 = 2Ω + 2Ω = 4Ω

Now, using V=IR allows us to find the current in the circuit.

V = IR

I = V/R = 9V/4Ω = 2.25 A

Plugging this value in, we can find the voltage drop across R1.

VR1 = IR = (2.25 A)(2Ω) = 4.5 V

Now we can determine the voltage drop across the parallel resistors by subtracting the voltage drop across R1 from the battery.

VA = 9V – 4.5V = 4.5V

this value will be the same for either RA or R4. We can now use V = IR to determine the amount of current that flows through R4.

V = IR

I = V/R = 4.5V/3Ω = 1.5A

Additionally, due to Kirchhoff’s first law, we know that current in must equal current out in a junction. Thus, because R4 has 1.5 A of current, RA must have 0.75A. Thus makes logical sense because electrons take the path of least resistance, meaning the resistor with the lowest resistance will have the greater current.

Example Question #1 : Current

During the cold winter months, some gloves have the ability to provide extra warmth due to an internal heating source. A simplified circuit, similar to those in electric gloves, is comprised of a 9V battery with no internal resistance and three resistors as shown in the image below. 

Screen_shot_2013-10-09_at_11.08.15_pm

What is the current that flows through the circuit?

Possible Answers:

Correct answer:

Explanation:

Because we are being asked the current that flows through the circuit, we can use the formula V = IR because we have the voltage drop across the circuit (9V) and can calculate the equivalent resistance.

 

By taking the inverse of the equation, we can see that RA4 is equal to 2Ω.

Req = RA4 + R1 = 2Ω + 2Ω = 4Ω

Now, using V = IR, we can find the current.

V = IR

I = V/R = 9V/4Ω = 2.25A

Example Question #1 : Current

If the peak voltage across a  resistor in an AC circuit is , what is the rms current across it?

Possible Answers:

Correct answer:

Explanation:

First, find the rms voltage across the resistor with the equation:

The pure voltage is , allowing us to solve for the rms voltage.

Now we can use Ohm's law to find the rms current.

Example Question #49 : Ap Physics 2

A 12V battery is connected in a circuit containing two resistors in parallel. The resistors have resistances of  and . The  resistor is then unscrewed, disconnecting that parallel branch. How does the new current, If, across the  resistor compare to the original current across that resistor, Io?

Possible Answers:

Correct answer:

Explanation:

Regardless of whether the  resistor is present, we can simply focus on the current loop containing the battery and  resistor.

For resistors in parallel, each component/branch will have the same voltage drop, but the current may vary. Initially, the voltage through the  resistor will be:

After the  resistor is removed, the voltage will remain unchanged.

Learning Tools by Varsity Tutors