Linear Algebra : Linear Equations

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #111 : Linear Equations

Solve the linear system:

Possible Answers:

The system has no solution.

Correct answer:

Explanation:

Write the augmented matrix of the system using the coefficients of the equations:

Perform the Gauss-Jordan elimination method on this matrix to get it in reduced row-echelon form. Use the following row operations:

The matrix is now in reduced row-echelon form. This matrix can be interpreted to mean:

.

The only solution is .

Example Question #11 : Non Homogeneous Cases

Give the partial fractions decomposition of .

Possible Answers:

Correct answer:

Explanation:

The denominator of the fraction, , can be factored as

 .

The partial fractions decomposition of a rational expression is the sum of fractions with these factors, with the numerator above each denominator being degree one less. Thus, the partial fractions decomposition of the given expression takes the form

 

for some 

Express the fractions with a common denominator:

Eliminate the denominators and perform some algebra:

Set the coefficients equal to form the linear system

This can be solved using Gauss-Jordan elimination on the augmented matrix 

Perform the following row operations on the matrix to get it into reduced row-echelon form:

, so the partial fractions decomposition is 

,

or, simplified, 

.

Example Question #113 : Linear Equations

Give the partial fractions decomposition of 

Possible Answers:

Correct answer:

Explanation:

The denominator of the fraction, , can be factored as

The partial fractions decomposition of a rational expression is the sum of fractions with these factors, with the numerator above each denominator being degree one less. Thus, the partial fractions decomposition of the given expression takes the form

for some .

Express the fractions with a common denominator:

Eliminate the denominators and perform some algebra:

Set the coefficients equal to form the linear system

This can be solved using Gauss-Jordan elimination on the augmented matrix 

Perform the following row operations on the matrix to get it into reduced row-echelon form:

, so the partial fractions decomposition is 

,

or, simplified, 

.

Example Question #111 : Linear Equations

Possible Answers:

Correct answer:

Explanation:

Example Question #112 : Linear Equations

Possible Answers:

Correct answer:

Explanation:

Example Question #113 : Linear Equations

Possible Answers:

Correct answer:

Explanation:

Example Question #114 : Linear Equations

Possible Answers:

Correct answer:

Explanation:

Example Question #115 : Linear Equations

Possible Answers:

Correct answer:

Explanation:

Example Question #116 : Linear Equations

Possible Answers:

Correct answer:

Explanation:

Example Question #117 : Linear Equations

Possible Answers:

Correct answer:

Explanation:

Learning Tools by Varsity Tutors