ISEE Upper Level Quantitative : ISEE Upper Level (grades 9-12) Quantitative Reasoning

Study concepts, example questions & explanations for ISEE Upper Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #122 : Equations

\displaystyle 3t = 7u

\displaystyle 4u = 7v

\displaystyle 9v = 2w

Which of the following is a true statement?

Possible Answers:

\displaystyle 54t = 49 w

\displaystyle 147t = 8w

\displaystyle 189t = 56w

\displaystyle 27t = 8w

\displaystyle 6t = w

Correct answer:

\displaystyle 54t = 49 w

Explanation:

\displaystyle 3t = 7u

\displaystyle \frac{3t}{3} =\frac{ 7u}{3}

\displaystyle t =\frac{ 7}{3}u

 

Similarly,

\displaystyle 4u = 7v

\displaystyle u = \frac{7}{4}v

 

\displaystyle 9v = 2w

\displaystyle v = \frac{2}{9}w

 

By substitution:

\displaystyle t =\frac{ 7}{3}u =\frac{ 7}{3} \cdot \frac{7}{4}v =\frac{ 7}{3} \cdot \frac{7}{4} \cdot \frac{2}{9}w

\displaystyle t = \frac{49}{54}w

\displaystyle 54 \cdot t =54 \cdot \frac{49}{54}w

\displaystyle 54t = 49 w

Example Question #123 : Equations

\displaystyle 8 ^{3x- 8} = 4 ^{y}

Express \displaystyle y in terms of \displaystyle x.

Possible Answers:

\displaystyle y = 6x- 16

\displaystyle y = 3x-8

\displaystyle y = \frac{3}{2}x- 4

\displaystyle y = \frac{9}{2}x- 12

\displaystyle y = 2x-\frac{16}{3}

Correct answer:

\displaystyle y = \frac{9}{2}x- 12

Explanation:

\displaystyle 8 ^{3x- 8} = 4 ^{y}

\displaystyle \left (2^{3} \right )^{3x- 8} = (2^{2}) ^{y}

\displaystyle 2^{3(3x- 8)} = 2^{2y}

\displaystyle 2y = 3(3x-8)

\displaystyle 2y = 9x-24

\displaystyle \frac{2y }{2}= \frac{9x-24}{2}

\displaystyle y = \frac{9}{2}x- 12

Example Question #801 : Isee Upper Level (Grades 9 12) Quantitative Reasoning

\displaystyle 6 ^{x} \cdot 36 ^{y} = 216 ^{t}

Which of the following is true of \displaystyle t ?

Possible Answers:

\displaystyle t = \frac{1}{3}x+ \frac{2}{3}y

\displaystyle t = x+2y

\displaystyle t = 3x+6y

\displaystyle t = \frac{2}{3}x+ \frac{1}{3}y

\displaystyle t = 6x+ 3y

Correct answer:

\displaystyle t = \frac{1}{3}x+ \frac{2}{3}y

Explanation:

\displaystyle 6 ^{x} \cdot 36 ^{y} = 216 ^{t}

\displaystyle 6 ^{x} \cdot\left ( 6 ^{2} \right )^{y} = \left (6^{3} \right )^{t}

\displaystyle 6 ^{x} \cdot 6 ^{2 y} = 6^{3 t}

\displaystyle 6 ^{x + 2 y} = 6^{3 t}

\displaystyle 3t = x+2y

\displaystyle \frac{3t }{3}= \frac{x+2y}{3}

\displaystyle t = \frac{1}{3}x+ \frac{2}{3}y

Example Question #125 : Equations

\displaystyle \frac{4 ^{x} }{8 ^{y} } = 16^{t}

Which of the following is true of \displaystyle t ?

Possible Answers:

\displaystyle t = \frac{1}{2}x- \frac{3}{4}y

\displaystyle t = 4x-2y

None of the other responses gives a correct answer.

\displaystyle t = 2x-\frac{4}{3} y

\displaystyle t = 8x-12y

Correct answer:

\displaystyle t = \frac{1}{2}x- \frac{3}{4}y

Explanation:

\displaystyle \frac{4 ^{x} }{8 ^{y} } = 16^{t}

\displaystyle \frac{\left (2^{2} \right )^{x} }{\left (2^{3} \right ) ^{y} } =\left ( 2^{4} \right ) ^{t}

\displaystyle \frac{ 2^{2x} }{ 2^{3y} } = 2^{4t}

\displaystyle 2^{2x -3y} = 2^{4t}

\displaystyle 4t = 2x-3y

\displaystyle \frac{4t }{4}= \frac{2x-3y}{4}

\displaystyle t = \frac{1}{2}x- \frac{3}{4}y

Example Question #126 : Equations

Function 4

Define \displaystyle f to be the function graphed in the figure above, and \displaystyle g(x) = 4x+8

Evaluate \displaystyle (g \circ f) (-3)

Possible Answers:

\displaystyle (g \circ f) (-3) = 16

\displaystyle -3 is outside the domain of \displaystyle g \circ f

\displaystyle (g \circ f) (-3) = -4

\displaystyle (g \circ f) (-3) = 4

\displaystyle (g \circ f) (-3) = 8

Correct answer:

\displaystyle (g \circ f) (-3) = 16

Explanation:

\displaystyle (g \circ f) (-3) = g [f(-3)]

From the diagram below, it can be seen that \displaystyle f(-3) = 2.

Function 4a

\displaystyle (g \circ f) (-3) = g [f(-3)] = g(2)

\displaystyle g(x) = 4x+8, so

\displaystyle g(x) = 4 (2)+8 = 8 + 8 = 16

Therefore, 

\displaystyle (g \circ f) (-3) = 16.

Example Question #121 : How To Find The Solution To An Equation

Function 4

Define \displaystyle f to be the function graphed in the figure above, and \displaystyle g(x) = 4x+8

Evaluate \displaystyle (f \circ g) (-3)

Possible Answers:

\displaystyle (f \circ g) (-3) = -4

\displaystyle -3 is outside the domain of \displaystyle f \circ g

\displaystyle (f \circ g) (-3) = 4

\displaystyle (f \circ g) (-3) = 16

\displaystyle (f \circ g) (-3) = 8

Correct answer:

\displaystyle (f \circ g) (-3) = 4

Explanation:

\displaystyle \left (f \circ g \right ) (-3) = f \left [ g (-3)\right ]

 

\displaystyle g(x) = 4x+8

\displaystyle g(-3) = 4 (-3)+8 = -12 + 8 = -4

 

\displaystyle f \left [ g (-3)\right ] = f(-4).

Examine the diagram below.

Function 4a

As can be seen, \displaystyle f(-4)= 4. Therefore, \displaystyle (f \circ g) (-3) = 4.

Example Question #131 : How To Find The Solution To An Equation

Function h

Let \displaystyle f be the function whose graph is shown in the above figure. \displaystyle g is defined by the equation

\displaystyle g(x) = f(-x).

Give the \displaystyle y-intercept of the graph of \displaystyle g.

Possible Answers:

\displaystyle (0, -5)

\displaystyle (0, 5)

\displaystyle (0, 2)

\displaystyle (0, -2)

The graph of \displaystyle g has no \displaystyle y-intercept.

Correct answer:

\displaystyle (0, 5)

Explanation:

The \displaystyle y-intercept of a function is the point at which \displaystyle x = 0, so we can find this by evaluating \displaystyle g(0).

\displaystyle g(x) = f(-x)

\displaystyle g(0) = f(-0) = f(0)

As seen in the diagram below, \displaystyle f(0) = 5.

Function h1

Therefore, \displaystyle g(0) = f(0) = 5, and the \displaystyle y-intercept of the graph of \displaystyle g is \displaystyle (0, 5).

Example Question #132 : How To Find The Solution To An Equation

Function h

Let \displaystyle f be the function whose graph is shown in the above figure. \displaystyle g is defined by the equation

\displaystyle g(x) = -f(x).

Give the \displaystyle y-intercept of the graph of \displaystyle g.

Possible Answers:

The graph of \displaystyle g has no \displaystyle y-intercept.

\displaystyle (0, 2)

\displaystyle (0, 5)

\displaystyle (0, -2)

\displaystyle (0, -5)

Correct answer:

\displaystyle (0, -5)

Explanation:

The \displaystyle y-intercept of a function is the point at which \displaystyle x = 0, so we can find this by evaluating \displaystyle g(0).

\displaystyle g(x) = -f(x)

\displaystyle g(0) = -f(0)

As seen in the diagram below, \displaystyle f(0) = 5.

Function h1

Therefore, \displaystyle g(0) = -f(0) = -5, and the \displaystyle y-intercept of the graph of \displaystyle g is \displaystyle (0, -5)

Example Question #131 : How To Find The Solution To An Equation

Function h

Let \displaystyle f be the function whose graph is shown in the above figure. \displaystyle g is defined by the equation

\displaystyle g(x) =- f^{-1}(x).

Give the \displaystyle y-intercept of the graph of \displaystyle g.

Possible Answers:

The graph of \displaystyle g has no \displaystyle y-intercept.

\displaystyle (0, 5)

\displaystyle (0, -5)

\displaystyle (0, -2)

\displaystyle (0, 2)

Correct answer:

\displaystyle (0, 2)

Explanation:

The \displaystyle y-intercept of a function is the point at which \displaystyle x = 0, so we can find this by evaluating \displaystyle g(0).

\displaystyle g(x) =- f^{-1}(x)

\displaystyle g(0) = - f^{-1}(0)

The graph of \displaystyle f includes the point \displaystyle (-2,0), as can be seen in the diagram below:

Function h1

Therefore, \displaystyle f(-2) = 0 and \displaystyle g(0) =- f^{-1}(0)=- \left (-2 \right )= 2. The \displaystyle y-intercept of the graph of \displaystyle g is \displaystyle (0, 2).

Example Question #131 : Equations

Give the solution set of the equation

\displaystyle |70-t| - 70 = 70 .

Possible Answers:

\displaystyle \left \{ 70, 210\right \}

The equation has no solution.

\displaystyle \left \{ -70, 210\right \}

\displaystyle \left \{ -210 , - 70 \right \}

\displaystyle \left \{ -210 , 70 \right \}

Correct answer:

\displaystyle \left \{ -70, 210\right \}

Explanation:

\displaystyle |70-t| - 70 = 70

\displaystyle |70-t| - 70 + 70 = 70 + 70

\displaystyle |70-t| = 140

Either 

\displaystyle 70- t = 140 or \displaystyle 70- t = -140

so we solve each separately.

 

\displaystyle 70- t = 140

\displaystyle 70- t + t - 140 = 140 + t - 140

\displaystyle -70 = t

 

\displaystyle 70- t+ t + 140 = -140+ t + 140

\displaystyle 210 = t

 

The solution set is \displaystyle \left \{ -70, 210\right \}.

Learning Tools by Varsity Tutors