ISEE Upper Level Quantitative : ISEE Upper Level (grades 9-12) Quantitative Reasoning

Study concepts, example questions & explanations for ISEE Upper Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #103 : Equations

One-third of the sum of a number and sixty is ninety-three. What is the number?

Possible Answers:

\displaystyle 91

\displaystyle 339

\displaystyle 219

\displaystyle 459

\displaystyle 99

Correct answer:

\displaystyle 219

Explanation:

If we let \displaystyle x be the number, "the sum of a number and sixty" can be written as 

\displaystyle x+60

"One-third of the sum of a number and sixty" can be written as 

\displaystyle \frac{1}{3} (x+60)

Set this equal to ninety-three and solve:

\displaystyle \frac{1}{3} (x+60) = 93

\displaystyle 3 \cdot \frac{1}{3} (x+60) =3 \cdot 93

\displaystyle x+60 = 279

\displaystyle x+60 - 60= 279 - 60

\displaystyle x = 219

Example Question #781 : Isee Upper Level (Grades 9 12) Quantitative Reasoning

Twelve added to two-fifths of a number is equal to sixty. What is that number?

Possible Answers:

\displaystyle 120

\displaystyle 102

\displaystyle 180

\displaystyle 162

\displaystyle 78

Correct answer:

\displaystyle 120

Explanation:

If we let \displaystyle x be the number, "two-fifths of a number" can be written as

\displaystyle \frac{2}{5} x.

"Twelve added to two-fifths of a number" can be written as

\displaystyle \frac{2}{5} x + 12.

Then "Twelve added to two-fifths of a number is equal to sixty" can be written and solved for \displaystyle x as follows:

\displaystyle \frac{2}{5} x + 12 = 60

\displaystyle \frac{2}{5} x + 12 - 12 = 60 - 12

\displaystyle \frac{2}{5} x =48

\displaystyle \frac{5} {2}\cdot \frac{2}{5}x = \frac{5} {2}\cdot 48

\displaystyle x = 120

Example Question #105 : Equations

Ninety-seven is five less than two-fifths of a number. What is the number?

Possible Answers:

\displaystyle 237\frac{1}{2}

\displaystyle 255

The correct answer is not among the other choices.

\displaystyle 230

\displaystyle 247\frac{1}{2}

Correct answer:

\displaystyle 255

Explanation:

If we let \displaystyle x be the number, "two-fifths of a number" can be written as 

\displaystyle \frac{2}{5}x.

"Five less than two-fifths of a number can be written as 

\displaystyle \frac{2}{5}x -5

"Ninety-seven is five less than two-fifths of a number" can be written and solved as follows:

\displaystyle 97 = \frac{2}{5}x -5

\displaystyle 97 + 5 = \frac{2}{5}x -5 + 5

\displaystyle 102 = \frac{2}{5}x

\displaystyle \frac{5}{2} \cdot 102 = \frac{5}{2} \cdot \frac{2}{5}x

\displaystyle 255 = x

Example Question #108 : How To Find The Solution To An Equation

Define \displaystyle f (x) = \sqrt{3x+8 } and \displaystyle g(x) = \sqrt{2x+7}.

What is the domain of the function \displaystyle f + g ?

Possible Answers:

\displaystyle \left [-2 \frac{2}{3}, \infty \right )

\displaystyle \left [-3 \frac{1} {2},-2 \frac{2}{3} \right ]

\displaystyle \left [-3 \frac{1} {2}, \infty \right )

\displaystyle (- \infty,\infty )

Correct answer:

\displaystyle \left [-2 \frac{2}{3}, \infty \right )

Explanation:

\displaystyle f (x) = \sqrt{3x+8 } has as its domain the set of values of \displaystyle x for which its radicand is nonnegative; that is,

\displaystyle 3x+8 \geq 0

\displaystyle 3x+8-8 \geq 0 -8

\displaystyle 3x \geq -8

\displaystyle 3x\div 3 \geq -8 \div 3

\displaystyle x \geq -2 \frac{2}{3} or \displaystyle \left [-2 \frac{2}{3}, \infty \right )

Similarly, \displaystyle g(x) = \sqrt{2x+7} has as its domain the set of values of \displaystyle x for which its radicand is nonnegative; that is,

\displaystyle 2x+7 \geq 0

\displaystyle 2x+7-7 \geq 0 -7

\displaystyle 2x \geq -7

\displaystyle 2x \div 2 \geq -7 \div 2

\displaystyle x \geq -3\frac{1}{2} or \displaystyle \left [-3 \frac{1} {2}, \infty \right )

 

The domain of the sum of two functions is the intersection of the domains of the two individual functions. This intersection is 

\displaystyle \left [-2 \frac{2}{3}, \infty \right ) \cap \left [-3 \frac{1} {2}, \infty \right ) = \left [-2 \frac{2}{3}, \infty \right )

Example Question #106 : Equations

For all real numbers \displaystyle a and \displaystyle b, define an operation \displaystyle \ast as follows:

\displaystyle a \ast b = \frac{a b + 1}{a+ b + 1 }

For which value of \displaystyle N is the expression \displaystyle N \ast \left (-7 \right ) undefined?

 

Possible Answers:

\displaystyle N = 6

\displaystyle N = 8

\displaystyle N = \frac{1}{7}

\displaystyle N = 7

\displaystyle N = - \frac{1}{7}

Correct answer:

\displaystyle N = 6

Explanation:

\displaystyle a \ast b = \frac{a b + 1}{a+ b + 1 } , so

\displaystyle N \ast \left (-7 \right ) = \frac{N (-7) + 1}{N+ (-7) + 1 } = \frac{-7N + 1}{N-6 }

This is is undefined if and only if the denominator is equal to zero, which happens when

\displaystyle N - 6 = 0, or \displaystyle N = 6

Example Question #107 : Equations

For all real numbers \displaystyle a and \displaystyle b, define an operation \displaystyle \Lambda as follows:

\displaystyle a \Lambda b = \frac{a^{2} b - 16}{16a^{2} + b}

For which value of \displaystyle N is the expression \displaystyle N \Lambda 4 undefined?

Possible Answers:

\displaystyle N = - \frac{1}{2 }

\displaystyle N = 2

\displaystyle N = -2

None of the other responses gives a correct answer.

\displaystyle N = \frac{1}{2 }

Correct answer:

None of the other responses gives a correct answer.

Explanation:

\displaystyle a \Lambda b = \frac{a^{2} b - 16}{16a^{2} + b}, so

\displaystyle N \Lambda 4 = \frac{N^{2} \cdot 4 - 16}{16 \cdot N^{2} +4} = \frac{4N^{2} - 16}{16 N^{2} +4}

This expression is undefined if and only if the denominator is equal to 0. However, for all values of \displaystyle N

\displaystyle 16 N^{2} \geq 0, so 

\displaystyle 16 N^{2} +4 > 0

It is impossible for \displaystyle N \Lambda 4 to be undefined, so none of the four values of \displaystyle N given gives a correct response.

 

Example Question #111 : Algebraic Concepts

Define \displaystyle f (x)= 2x+ 5 and \displaystyle g (x) = 2x+3.

Evaluate \displaystyle \left ( g \circ f \right )(3) .

Possible Answers:

\displaystyle \left ( g \circ f \right )(3) = 28

\displaystyle \left ( g \circ f \right )(3) = 23

\displaystyle \left ( g \circ f \right )(3) = 25

\displaystyle \left ( g \circ f \right )(3) = 20

\displaystyle \left ( g \circ f \right )(3) = 33

Correct answer:

\displaystyle \left ( g \circ f \right )(3) = 25

Explanation:

\displaystyle \left ( g \circ f \right )(3) = g (f(3))

\displaystyle f (x)= 2x+ 5, so

\displaystyle f (3)= 2 \cdot 3 + 5 = 6 + 5 = 11

\displaystyle g (x) = 2x+3, so

\displaystyle g (f(3)) = g (11) = 2 \cdot 11 + 3 = 22 + 3 = 25,

which is the correct response.

Example Question #111 : Equations

Define \displaystyle f (x)= 2x+ 5 and \displaystyle g (x) = 2x+3.

If \displaystyle \left ( f \circ g\right ) (N) = 100, evaluate \displaystyle N.

Possible Answers:

\displaystyle N = 22 \frac{3}{4}

\displaystyle N = 21 \frac{1}{4}

None of the other responses gives a correct answer.

\displaystyle N = 21 \frac{3}{4}

\displaystyle N = 22 \frac{1}{4}

Correct answer:

\displaystyle N = 22 \frac{1}{4}

Explanation:

\displaystyle \left ( f \circ g\right ) (x) = f(g(x)) = f(2x+3) = 2 (2x+3) +5 = 4x + 6 + 5 = 4x + 11

Therefore, if 

\displaystyle \left ( f \circ g\right ) (N) = 100,

we solve for \displaystyle N in the equation

\displaystyle 4N + 11 = 100

\displaystyle 4N + 11- 11 = 100 - 11

\displaystyle 4N = 89

\displaystyle 4N \div 4 = 89 \div 4

\displaystyle N = 22 \frac{1}{4}

Example Question #781 : Isee Upper Level (Grades 9 12) Quantitative Reasoning

For all real numbers \displaystyle a and \displaystyle b, define an operation \displaystyle \Leftrightarrow as follows:

\displaystyle a\Leftrightarrow b = \frac{a + b}{ ab+1}

\displaystyle t is a positive number. Which is the greater quantity?

(A) \displaystyle t \Leftrightarrow 4t

(B) \displaystyle 2t \Leftrightarrow 2t

Possible Answers:

(A) and (B) are equal

(A) is greater

(B) is greater

It is impossible to determine which is greater from the information given

Correct answer:

(A) is greater

Explanation:

Substitute for both in the expression:

\displaystyle a\Leftrightarrow b = \frac{a + b}{ ab+1}

\displaystyle t\Leftrightarrow 4t = \frac{t + 4t}{ t \cdot 4t +1} = \frac{5t}{4t^{2}+1}

\displaystyle 2t\Leftrightarrow 2t = \frac{2t + 2t}{ 2t \cdot 2t +1} = \frac{4t}{4t^{2}+1}

The quantities share a denominator that is positve, being one greater than for times a square of a positive. Therefore, we need only compare numerators. For any positive \displaystyle t\displaystyle 5t > 4t. Therefore,

\displaystyle \frac{5t}{4t^{2}+1} > \frac{4t}{4t^{2}+1}

and 

\displaystyle t\Leftrightarrow 4t > 2t\Leftrightarrow 2t

making (A) greater.

Example Question #114 : How To Find The Solution To An Equation

\displaystyle x and \displaystyle y are both positive.

20 added to four-thirds of \displaystyle x is equal to \displaystyle y. Which is the greater quantity?

(A) \displaystyle x 

(B) \displaystyle y

Possible Answers:

It is impossible to determine which is greater from the information given

(B) is greater

(A) is greater

(A) and (B) are equal

Correct answer:

(B) is greater

Explanation:

The statement is equivalent to 

\displaystyle y = \frac{4}{3}x + 20

If \displaystyle x is positive, then 

\displaystyle \frac{4}{3} x > x

and 

\displaystyle y = \frac{4}{3} x + 20 > \frac{4}{3} x > x

and \displaystyle y > x,

making (B) greater.

Learning Tools by Varsity Tutors