ISEE Lower Level Quantitative : How to find the area of a parallelogram

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #528 : Plane Geometry

What is the length of a yard with a perimeter of \(\displaystyle 26ft\) and a width of \(\displaystyle 5ft?\)

 

Possible Answers:

\(\displaystyle 9ft\)

\(\displaystyle 8ft\)

\(\displaystyle 5ft\)

\(\displaystyle 6ft\)

\(\displaystyle 7ft\)

Correct answer:

\(\displaystyle 8ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 26=2l+2(5)\)

\(\displaystyle 26=2l+10\)

Subtract \(\displaystyle 10\) from both sides

\(\displaystyle 26-10=2l+10-10\)

\(\displaystyle 16=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{16}{2}=\frac{2l}{2}\)

\(\displaystyle 8=l\)

Example Question #181 : Solve Problems Involving Measurement And Conversion Of Measurements

What is the length of a yard with a perimeter of \(\displaystyle 18ft\) and a width of \(\displaystyle 3ft?\)

 

Possible Answers:

\(\displaystyle 3ft\)

\(\displaystyle 6ft\)

\(\displaystyle 4ft\)

\(\displaystyle 5ft\)

\(\displaystyle 2ft\)

Correct answer:

\(\displaystyle 6ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 18=2l+2(3)\)

\(\displaystyle 18=2l+6\)

Subtract \(\displaystyle 6\) from both sides

\(\displaystyle 18-6=2l+6-6\)

\(\displaystyle 12=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{12}{2}=\frac{2l}{2}\)

\(\displaystyle 6=l\)

Example Question #531 : Plane Geometry

What is the length of a yard with a perimeter of \(\displaystyle 30ft\) and a width of \(\displaystyle 8ft?\)

 

Possible Answers:

\(\displaystyle 7ft\)

\(\displaystyle 10ft\)

\(\displaystyle 9ft\)

\(\displaystyle 8ft\)

\(\displaystyle 11ft\)

Correct answer:

\(\displaystyle 7ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 30=2l+2(8)\)

\(\displaystyle 30=2l+16\)

Subtract \(\displaystyle 16\) from both sides

\(\displaystyle 30-16=2l+16-16\)

\(\displaystyle 14=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{14}{2}=\frac{2l}{2}\)

\(\displaystyle 7=l\)

Example Question #121 : How To Find The Area Of A Parallelogram

What is the length of a yard with a perimeter of \(\displaystyle 36ft\) and a width of \(\displaystyle 8ft?\)

 

Possible Answers:

\(\displaystyle 11ft\)

\(\displaystyle 14ft\)

\(\displaystyle 12ft\)

\(\displaystyle 10ft\)

\(\displaystyle 13ft\)

Correct answer:

\(\displaystyle 10ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 36=2l+2(8)\)

\(\displaystyle 36=2l+16\)

Subtract \(\displaystyle 16\) from both sides

\(\displaystyle 36-16=2l+16-16\)

\(\displaystyle 20=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{20}{2}=\frac{2l}{2}\)

\(\displaystyle 10=l\)

Example Question #122 : How To Find The Area Of A Parallelogram

What is the length of a yard with a perimeter of \(\displaystyle 28ft\) and a width of \(\displaystyle 5ft?\)

 

Possible Answers:

\(\displaystyle 8ft\)

\(\displaystyle 12ft\)

\(\displaystyle 9ft\)

\(\displaystyle 10ft\)

\(\displaystyle 11ft\)

Correct answer:

\(\displaystyle 9ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 28=2l+2(5)\)

\(\displaystyle 28=2l+10\)

Subtract \(\displaystyle 10\) from both sides

\(\displaystyle 28-10=2l+10-10\)

\(\displaystyle 18=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{18}{2}=\frac{2l}{2}\)

\(\displaystyle 9=l\)

Example Question #123 : How To Find The Area Of A Parallelogram

What is the length of a yard with a perimeter of \(\displaystyle 12ft\) and a width of \(\displaystyle 2ft?\)

 

Possible Answers:

\(\displaystyle 3ft\)

\(\displaystyle 5ft\)

\(\displaystyle 6ft\)

\(\displaystyle 2ft\)

\(\displaystyle 4ft\)

Correct answer:

\(\displaystyle 4ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 12=2l+2(2)\)

\(\displaystyle 12=2l+4\)

Subtract \(\displaystyle 4\) from both sides

\(\displaystyle 12-4=2l+4-4\)

\(\displaystyle 8=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{8}{2}=\frac{2l}{2}\)

\(\displaystyle 4=l\)

Example Question #124 : How To Find The Area Of A Parallelogram

What is the length of a yard with a perimeter of \(\displaystyle 18ft\) and a width of \(\displaystyle 2ft?\)

 

Possible Answers:

\(\displaystyle 7ft\)

\(\displaystyle 8ft\)

\(\displaystyle 5ft\)

\(\displaystyle 6ft\)

\(\displaystyle 4ft\)

Correct answer:

\(\displaystyle 7ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 18=2l+2(2)\)

\(\displaystyle 18=2l+4\)

Subtract \(\displaystyle 4\) from both sides

\(\displaystyle 18-4=2l+4-4\)

\(\displaystyle 14=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{14}{2}=\frac{2l}{2}\)

\(\displaystyle 7=l\)

Example Question #125 : How To Find The Area Of A Parallelogram

What is the length of a yard with a perimeter of \(\displaystyle 26ft\) and a width of \(\displaystyle 4ft?\)

 

Possible Answers:

\(\displaystyle 5ft\)

\(\displaystyle 6ft\)

\(\displaystyle 9ft\)

\(\displaystyle 8ft\)

\(\displaystyle 7ft\)

Correct answer:

\(\displaystyle 9ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 26=2l+2(4)\)

\(\displaystyle 26=2l+8\)

Subtract \(\displaystyle 8\) from both sides

\(\displaystyle 26-8=2l+8-8\)

\(\displaystyle 18=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{18}{2}=\frac{2l}{2}\)

\(\displaystyle 9=l\)

Example Question #121 : How To Find The Area Of A Parallelogram

What is the length of a yard with a perimeter of \(\displaystyle 16ft\) and a width of \(\displaystyle 11ft?\)

 

Possible Answers:

\(\displaystyle 6ft\)

\(\displaystyle 7ft\)

\(\displaystyle 5ft\)

\(\displaystyle 8ft\)

\(\displaystyle 4ft\)

Correct answer:

\(\displaystyle 4ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 16=2l+2(4)\)

\(\displaystyle 16=2l+8\)

Subtract \(\displaystyle 8\) from both sides

\(\displaystyle 16-8=2l+8-8\)

\(\displaystyle 8=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{8}{2}=\frac{2l}{2}\)

\(\displaystyle 4=l\)

Example Question #71 : Geometry

What is the length of a yard with a perimeter of \(\displaystyle 28ft\) and a width of \(\displaystyle 4ft?\)

 

Possible Answers:

\(\displaystyle 12ft\)

\(\displaystyle 13ft\)

\(\displaystyle 10ft\)

\(\displaystyle 11ft\)

\(\displaystyle 9ft\)

Correct answer:

\(\displaystyle 10ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 28=2l+2(4)\)

\(\displaystyle 28=2l+8\)

Subtract \(\displaystyle 8\) from both sides

\(\displaystyle 28-8=2l+8-8\)

\(\displaystyle 20=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{20}{2}=\frac{2l}{2}\)

\(\displaystyle 10=l\)

Learning Tools by Varsity Tutors