Intermediate Geometry : Quadrilaterals

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Parallelograms

The length of a parallelogram is \displaystyle 12 cm and the width is \displaystyle 5 cm. One of its diagonals measures \displaystyle 14 cm. Find the length of the other diagonal.  

Possible Answers:

\displaystyle \sqrt{142}cm 

\displaystyle 3\sqrt{3}cm

\displaystyle 2\sqrt{38}cm

\displaystyle 4\sqrt{38}cm

None of the other answers.

Correct answer:

\displaystyle \sqrt{142}cm 

Explanation:

The formula for the relationship between diagonals and sides of a parallologram is

 \displaystyle (d_{1})^{2} + (d_{2})^{2} = 2a^{2} + 2b^{2},

where \displaystyle d_{1} represents one diagonal, 

\displaystyle d_{2} represents the other diagonal, 

\displaystyle a represents a side, and 

\displaystyle b represents the adjoining side.  

So, in this problem, substitute the known values and solve for the missing diagonal. 

\displaystyle 14^{2} + (d_{2})^{2} = 2(12)^{2} + 2(5)^{2} \rightarrow 196 + d^{2} = 288 + 50

\displaystyle \rightarrow d^{2} = 142 \rightarrow d = \sqrt{142}

So, the missing diagonal is \displaystyle \sqrt{142} cm.

Example Question #1 : How To Find The Length Of The Diagonal Of A Parallelogram

Parallogram

In the parallogram above, find the length of the labeled diagonal.

 

Possible Answers:

\displaystyle 14

\displaystyle 52

None of the other answers.

\displaystyle 26

\displaystyle 12

Correct answer:

\displaystyle 52

Explanation:

In a parallogram, diagonals bisect one another, thus you can set the two segments that are labeled in the picture equal to one another, then solve for \displaystyle x.  

So, 

\displaystyle 2x - 2 = x + 12 \rightarrow x = 14.

If \displaystyle x = 14, then you can substitute 14 into each labeled segment, to get a total of 52.

\displaystyle 2(14)-2+14+12

\displaystyle 28-2+14+12=52

Example Question #3 : Parallelograms

In the parallogram below, find the length of the labeled diagonal.

Parallelogram2

Possible Answers:

\displaystyle 1

\displaystyle 20

None of the other answers.

\displaystyle 40

\displaystyle 6

Correct answer:

\displaystyle 40

Explanation:

In a parallelogram, the diagonals bisect one another, so you can set the labeled segments equal to each other and then solve for \displaystyle x.  

\displaystyle x + 14 = 5x - 10 \rightarrow 24 = 4x \rightarrow 6 = x.  

If \displaystyle x = 6, then you substitute 6 into each labeled segment, to get a total of 40.

\displaystyle 6+14+5(6)-10

\displaystyle 20+30-10=40

Example Question #2 : How To Find The Length Of The Diagonal Of A Parallelogram

Para3

In the parallelogram above, find the length of the labeled diagonal.

Possible Answers:

\displaystyle 5.6

None of the other answers.

\displaystyle 11.2

\displaystyle 9.6

\displaystyle 4.8

Correct answer:

\displaystyle 11.2

Explanation:

In a parallelogram, the diagonals bisect each other, so you can set the labeled segments equal to one another and then solve for \displaystyle x

\displaystyle 20 - 3x = 2x - 4 \rightarrow 24 = 5x \rightarrow 4.8 = x.  

Then, substitute 4.8 for \displaystyle x in each labeled segment to get a total of 11.2 for the diagonal length.

\displaystyle 20-3(4.8)+2(4.8)-4

\displaystyle 20-14.4+9.6-4=11.2

Example Question #2 : How To Find The Length Of The Diagonal Of A Parallelogram

Suppose a square has an area of 6.  What is the diagonal of the parallelogram?

Possible Answers:

\displaystyle 3\sqrt2

\displaystyle \frac{3\sqrt2}{2}

\displaystyle 2\sqrt3

\displaystyle 6\sqrt2

\displaystyle 3\sqrt3

Correct answer:

\displaystyle 2\sqrt3

Explanation:

Write the formula to find the side of the square given the area.

\displaystyle A=s^2

Find the side.

\displaystyle 6=s^2

\displaystyle s=\sqrt6

The diagonal of the square can be solved by using the Pythagorean Theorem.

\displaystyle a^2+b^2=c^2

\displaystyle a=b=s=\sqrt6

Substitute and solve for the diagonal, \displaystyle c.

\displaystyle (\sqrt6)^2+(\sqrt6)^2 =c^2

\displaystyle 6+6=c^2

\displaystyle c^2=12

\displaystyle c=\sqrt{12}=2\sqrt3

Example Question #1 : How To Find The Length Of The Diagonal Of A Parallelogram

If the side length of a square is \displaystyle 3a, what is the diagonal of the square?

Possible Answers:

\displaystyle a\sqrt6

\displaystyle 3a\sqrt2

\displaystyle a^2\sqrt6

\displaystyle 3a^2\sqrt2

\displaystyle 9a\sqrt2

Correct answer:

\displaystyle 3a\sqrt2

Explanation:

Write the diagonal formula for a square.

\displaystyle d=s\sqrt2

Substitute the side length and reduce.

\displaystyle d=3a\sqrt2

Example Question #1 : How To Find The Length Of The Diagonal Of A Parallelogram

Parallelogram \displaystyle ABCD has diagonals \displaystyle \overline{AC} and \displaystyle \overline{BD}\displaystyle AC = 12 and \displaystyle BD = 6.

True, false, or undetermined: Parallelogram \displaystyle ABCD is a rectangle.

Possible Answers:

True

False

Undetermined

Correct answer:

False

Explanation:

One characteristic of a rectangle is that its diagonals are congruent. Since the diagonals of Parallelogram \displaystyle ABCD are of different lengths, it cannot be a rectangle.

Example Question #1 : Parallelograms

Parallelogram \displaystyle ABCD has diagonals \displaystyle \overline{AC} and \displaystyle \overline{BD}\displaystyle AC = 12 and \displaystyle BD = 6.

True, false, or undetermined: Parallelogram \displaystyle ABCD is a rhombus.

Possible Answers:

False

True 

Undetermined

Correct answer:

Undetermined

Explanation:

One characteristic of a rhombus is that its diagonals are perpendicular; no restrictions exist as to their lengths. Whether or not the diagonals are perpendicular is not stated, so the figure may or may not be a rhombus.

Example Question #1 : How To Find The Perimeter Of A Parallelogram

Parallelogram_custom_2

Find the perimeter of the parallelogram shown above. 

Possible Answers:

\displaystyle \small 26

\displaystyle \small 19

\displaystyle \small 48

\displaystyle \small 40

Correct answer:

\displaystyle \small 26

Explanation:

In order to find the perimeter of this parallelogram, apply the formula: 
\displaystyle \small Perimeter=2(base+side).

The solution is:

\displaystyle \small P=2(8+5)

\displaystyle \small \small P=2(13)=26

Example Question #2 : How To Find The Perimeter Of A Parallelogram

Parallelogram_custom_3

Find the perimeter of the parallelogram shown above. 

Possible Answers:

\displaystyle \small 112

\displaystyle \small 224

\displaystyle \small 248

\displaystyle \small 110

Correct answer:

\displaystyle \small 224

Explanation:

To find the perimeter of this parallelogram, first find the length of the side: \displaystyle \small h\times\frac{1}{3}.

Since, \displaystyle \small h=48, the side must be \displaystyle \small 48\div 3=16.

Then apply the formula: 

\displaystyle \small p=2(base+side)

\displaystyle \small p=2(96+16)

\displaystyle \small p=2(112)=224

Learning Tools by Varsity Tutors