Intermediate Geometry : Quadrilaterals

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Rhombuses

Given: Rhombuses \displaystyle ABCD and \displaystyle EFGH.

\displaystyle AB = EF

True, false, or undetermined: Rhombus \displaystyle ABCD \cong Rhombus \displaystyle EFGH.

Possible Answers:

False

True

Undetermined

Correct answer:

Undetermined

Explanation:

Two figures are congruent by definition if all of their corresponding sides are congruent and all of their corresponding angles are congruent.

By definition, a rhombus has four sides of equal length.  If we let \displaystyle s_{1} be the common sidelength of Rhombus \displaystyle ABCD and \displaystyle s_{2} be the common sidelength of Rhombus \displaystyle EFGH, then, since \displaystyle AB = EF, it follows that \displaystyle s_{1} = s_{2}, so corresponding sides are congruent. However, no information is given about their angle measures. Therefore, it cannot be determined whether or not the two rhombuses are congruent.

 

Example Question #1 : How To Find If Rhombuses Are Similar

Given: Rhombuses \displaystyle ABCD and \displaystyle EFGH.

\displaystyle m \angle A = 60 ^{\circ } and \displaystyle m \angle F = 120 ^{\circ }

True, false, or undetermined: Rhombus \displaystyle ABCD \sim Rhombus \displaystyle EFGH.

Possible Answers:

True

False

Undetermined

Correct answer:

True

Explanation:

Two figures are similar by definition if all of their corresponding sides are proportional and all of their corresponding angles are congruent.

By definition, a rhombus has four sides that are congruent. If we let \displaystyle s_{1} be the common sidelength of Rhombus \displaystyle ABCD and \displaystyle s_{2} be the common sidelength of Rhombus \displaystyle EFGH, it can easily be seen that the ratio of the length of each side of the former to that of the latter is the same ratio, namely, \displaystyle \frac{s_{1}}{s_{2}}.

Also, a rhombus being a parallelogram, its opposite angles are congruent, and its consecutive angles are supplementary. Therefore, since \displaystyle m \angle A = 60 ^{\circ }, it follows that \displaystyle m\angle C = 60 ^{\circ }, and \displaystyle m \angle B = m \angle D = 180 ^{\circ } - 60^{\circ } = 120 ^{\circ }. By a similar argument, \displaystyle m \angle H = m \angle F = 120 ^{\circ } and \displaystyle m \angle E = m \angle G= 180 ^{\circ } - 120 ^{\circ } = 60^{\circ }. Therefore, 

\displaystyle \angle A \cong \angle E

\displaystyle \angle B \cong \angle F

\displaystyle \angle C \cong \angle F

\displaystyle \angle D \cong \angle H

Since all corresponding sides are proportional and all corresponding angles are congruent, it holds that Rhombus \displaystyle ABCD \sim Rhombus \displaystyle EFGH.

Example Question #1 : How To Find An Angle In A Rhombus

A rhombus has two interior angles with a measurement of \displaystyle 56 degrees. What is the measurement of each of the other two interior angles? 

Possible Answers:

All of the interior angles of the rhombus are \displaystyle 56 degrees.

Both of the remaining angles are \displaystyle 124 degrees.

One angle is \displaystyle 124 degrees and the other angle must be \displaystyle 56 degrees. 

Not enough information is provided to solve this problem. 

Correct answer:

Both of the remaining angles are \displaystyle 124 degrees.

Explanation:

The four interior angles in any rhombus must have a sum of \displaystyle 360 degrees. The opposite interior angles must be equivalent, and the adjacent angles have a sum of \displaystyle 180 degrees. 

Thus, if a rhombus has two interior angles of \displaystyle 56 degrees, there must also be two angles that equal: 

\displaystyle 180-56=124


Check:

\displaystyle 56+56+124+124=360

Example Question #2 : How To Find An Angle In A Rhombus

Rhombus_missing_angle_dos

Using the rhombus above, find the sum of angles \displaystyle C and \displaystyle A.

Possible Answers:

\displaystyle 158^\circ

\displaystyle 79^\circ

\displaystyle 202^\circ

\displaystyle 101^\circ

Correct answer:

\displaystyle 158^\circ

Explanation:

The four interior angles in any rhombus must have a sum of \displaystyle 360 degrees.

The opposite interior angles must be equivalent, and the adjacent angles have a sum of \displaystyle 180 degrees. 

Since  then, 

\displaystyle 79+79=158^\circ

Example Question #1 : How To Find An Angle In A Rhombus

Rhombus_missing_angle_dos

In the above rhombus, angle \displaystyle C=79 degrees. Find the sum of angles \displaystyle D and \displaystyle B. 

Possible Answers:

\displaystyle 110^\circ

\displaystyle 158^\circ

\displaystyle 101^\circ

\displaystyle 202^\circ

Correct answer:

\displaystyle 202^\circ

Explanation:

The four interior angles in any rhombus must have a sum of \displaystyle 360 degrees. The opposite interior angles must be equivalent, and the adjacent angles have a sum of \displaystyle 180 degrees. 

Since ,  

And  

So, \displaystyle 101+101=202^\circ

Example Question #4 : How To Find An Angle In A Rhombus

Vt_vt_rhomb_tres

In the rhombus shown above, angle \displaystyle X has a measurement of \displaystyle 63 degrees. Find the measurement of angle \displaystyle Y

Possible Answers:

\displaystyle 63^\circ

\displaystyle 107^\circ

\displaystyle 126^\circ

\displaystyle 117^\circ

Correct answer:

\displaystyle 117^\circ

Explanation:

The four interior angles in any rhombus must have a sum of \displaystyle 360 degrees.

The opposite interior angles must be equivalent, and the adjacent angles have a sum of \displaystyle 180 degrees. 

Since angle \displaystyle Y is adjacent to angle \displaystyle X, they must have a sum of \displaystyle 180 degrees. 

The solution is:

\displaystyle 180-63=117^\circ

Example Question #5 : How To Find An Angle In A Rhombus

Vt_vt_rhomb_tres

In the rhombus shown above, angle \displaystyle X has a measurement of \displaystyle 63 degrees. Find the sum of angles \displaystyle X and \displaystyle Z.

Possible Answers:

\displaystyle 140^\circ

\displaystyle 126^\circ

\displaystyle 117^\circ

\displaystyle 120^\circ

Correct answer:

\displaystyle 126^\circ

Explanation:

The four interior angles in any rhombus must have a sum of \displaystyle 360 degrees.

The opposite interior angles must be equivalent, and the adjacent angles have a sum of \displaystyle 180 degrees. 

Angles \displaystyle X and \displaystyle Z are opposite interior angles, so they must have equivalent measurements.

The sum is:

\displaystyle 63+63=126^\circ

Example Question #1 : How To Find An Angle In A Rhombus

Vt_vt_rhomb_tres 

Angle \displaystyle X has a measurement of \displaystyle 63 degrees. Find the sum of angles \displaystyle W and \displaystyle Y.

Possible Answers:

\displaystyle 126^\circ

\displaystyle 203^\circ

\displaystyle 117^\circ

\displaystyle 234^\circ

Correct answer:

\displaystyle 234^\circ

Explanation:

The four interior angles in any rhombus must have a sum of \displaystyle 360 degrees.

The opposite interior angles must be equivalent, and the adjacent angles have a sum of \displaystyle 180 degrees. 

Since, both angles \displaystyle W and \displaystyle Y are adjacent to angle \displaystyle X--find the measurement of one of these two angles by: \displaystyle 180-63=117.

Angle \displaystyle W and angle \displaystyle Y must each equal \displaystyle 117 degrees. So the sum of angles \displaystyle W and \displaystyle Y=117+117=234 degrees. 


Example Question #171 : Intermediate Geometry

Given: Parallelogram \displaystyle ABCD such that \displaystyle m \angle A = 80^{\circ }.

True or false: Parallelogram \displaystyle ABCD cannot be a rhombus.

Possible Answers:

True

False

Correct answer:

False

Explanation:

A rhombus is defined to be a parallelogram with four congruent sides; there is no restriction as to the measures of the angles. Therefore, a rhombus can have angles of any measure. The correct choice is "false".

Example Question #1 : How To Find An Angle In A Rhombus

Given: Rhombus \displaystyle ABCD with diagonals \displaystyle \overline{AC} and \displaystyle \overline{BD} intersecting at point \displaystyle X.

True or false: \displaystyle \angle AXB must be a right angle.

Possible Answers:

True

False

Correct answer:

True

Explanation:

One characteristic of a rhombus is that its diagonals are perpendicular. It follows that \displaystyle \angle AXB must be a right angle.

Learning Tools by Varsity Tutors