Intermediate Geometry : Quadrilaterals

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Length Of The Side Of A Kite

Vt_custom_kite_series_int._geo

Using the kite shown above, find the length of side \displaystyle b.

Possible Answers:

\displaystyle 9cm

\displaystyle 11cm

\displaystyle 18cm 

\displaystyle \frac{21}{2}cm

\displaystyle 21cm

Correct answer:

\displaystyle 18cm 

Explanation:

To find the missing side of this kite, work backwards using the formula:

\displaystyle p=2(a+b), where \displaystyle a and \displaystyle b represent the length of one side from each of the two pairs of adjacent sides. 

The solution is:

\displaystyle 58=2(11+b)

\displaystyle \frac{58}{2}=11+b

\displaystyle 29=11+b

\displaystyle b=29-11=18

Example Question #2 : How To Find The Length Of The Side Of A Kite

Vt_custom_kite_series_cont._

Using the kite shown above, find the length of side \displaystyle b. (Note, the perimeter of this kite is equal to \displaystyle 2.5 feet). 

Possible Answers:

\displaystyle 4ft

\displaystyle \frac{12}{5}in

\displaystyle \frac{3}{4}ft

\displaystyle 1.5ft

\displaystyle 1.25ft

Correct answer:

\displaystyle \frac{3}{4}ft

Explanation:

To find the missing side of this kite, work backwards using the formula:

\displaystyle p=2(a+b), where \displaystyle a and \displaystyle b represent the length of one side from each of the two pairs of adjacent sides. 

The solution is:

\displaystyle 2.5 feet=2(0.5 foot+b)

\displaystyle \frac{2.5}{2}=(0.5+b)

\displaystyle 1.25=0.5+b

\displaystyle b=1.25-0.5=0.75=\frac{3}{4}

Example Question #1 : How To Find The Length Of The Side Of A Kite

Ms. Dunn has a kite shaped backyard with a perimeter of \displaystyle 62 yards. One pair of adjacent sides of the kite-shaped backyard each have lengths of \displaystyle 8 yard. What is the measurement for one of the other two sides of the kite-shaped backyard?

Possible Answers:

\displaystyle 26yds

\displaystyle 7yds

\displaystyle 24yds

\displaystyle 18yds

\displaystyle 23yds

Correct answer:

\displaystyle 23yds

Explanation:

To find the missing side of this kite, work backwards using the formula:

\displaystyle p=2(a+b), where \displaystyle a and \displaystyle b represent the length of one side from each of the two pairs of adjacent sides. 

The solution is:

\displaystyle 62=2(8+b)

\displaystyle \frac{62}{2}=(8+b)

\displaystyle 31=8+b

\displaystyle b=31-8=23

Example Question #1 : How To Find The Length Of The Side Of A Kite

A kite has a perimeter of \displaystyle 138 mm. One pair of adjacent sides of the kite have lengths of \displaystyle 33 mm. What is the measurement for one of the other two sides of the kite?

Possible Answers:

\displaystyle 79mm 

\displaystyle 105mm 

\displaystyle 26mm 

\displaystyle 36mm 

\displaystyle 69mm 

Correct answer:

\displaystyle 36mm 

Explanation:

To find the missing side of this kite, work backwards using the formula:

\displaystyle p=2(a+b), where \displaystyle a and \displaystyle b represent the length of one side from each of the two pairs of adjacent sides. 

The solution is:

\displaystyle 138=2(33+b)

\displaystyle \frac{138}{2}=33+b

\displaystyle 69=33+b

\displaystyle b=69-33=36

Example Question #1 : How To Find The Length Of The Side Of A Kite

Kite_series_cont....

Using the above kite, find the length of side \displaystyle a

Possible Answers:

\displaystyle 12in

\displaystyle 5in

\displaystyle 5.5in

\displaystyle 11.5in

\displaystyle 10.5in

Correct answer:

\displaystyle 5.5in

Explanation:

To find the missing side of this kite, work backwards using the formula:

\displaystyle p=2(a+b), where \displaystyle a and \displaystyle b represent the length of one side from each of the two pairs of adjacent sides. 

The solution is:

\displaystyle 30=2(9.5+a)

\displaystyle 30=19+2a

\displaystyle 2a=30-19=11

\displaystyle a=\frac{11}{2}=5.5






Example Question #7 : How To Find The Length Of The Side Of A Kite

The lengths of the non-adjacent sides of a kite have the ratio \displaystyle 4:1. If the longer sides have a length of \displaystyle 12 cm, what is the length of each of the shorter two sides? 

Possible Answers:

\displaystyle \frac{4}{12}cm 

\displaystyle 4cm 

\displaystyle 3cm 

\displaystyle 1.5cm 

\displaystyle 19cm

Correct answer:

\displaystyle 3cm 

Explanation:

The sides have the ratio \displaystyle 4:1, thus the longer sides must be \displaystyle 4 times greater than the smaller sides.

Since the longer sides are \displaystyle 12 cm, the shorter sides must be: 

\displaystyle 12\div4=3

Example Question #11 : Kites

A kite has a perimeter of \displaystyle 214 mm. One pair of adjacent sides of the kite have lengths of \displaystyle 52 mm. What is the measurement for one of the other two sides of the kite?

Possible Answers:

\displaystyle 41mm

\displaystyle 107mm

\displaystyle 53mm

\displaystyle 55mm

\displaystyle 71mm

Correct answer:

\displaystyle 55mm

Explanation:

To find the missing side of this kite, work backwards using the formula:

\displaystyle p=2(a+b), where \displaystyle a and \displaystyle b represent the length of one side from each of the two pairs of adjacent sides. 

The solution is:

\displaystyle 214=2(52+b)

\displaystyle \frac{214}{2}=(52+b)

\displaystyle 107=52+b

\displaystyle b=107-52=55


Example Question #12 : Kites

Kite_pic_custom_vt

Find the longest side of the kite that is shown above. 

Possible Answers:

\displaystyle 89in

\displaystyle \frac{91}{2}in

\displaystyle 83in

\displaystyle 93in

\displaystyle 81in

Correct answer:

\displaystyle 83in

Explanation:

To find the missing side of this kite, work backwards using the formula:


\displaystyle p=2(a+b), where \displaystyle a and \displaystyle b represent the length of one side from each of the two pairs of adjacent sides. 

The solution is:

\displaystyle 324=2(79+b)

\displaystyle \frac{324}{2}=(79+b)

\displaystyle 162=(79+b)

\displaystyle b=162-79=83

Example Question #13 : Kites

A kite has a perimeter of \displaystyle 3\frac{1}{2} feet. One pair of adjacent sides of the kite have lengths of \displaystyle 1 foot each. What is the measurement for one of the other two sides of the kite?

Possible Answers:

\displaystyle \frac{1}{4}ft

\displaystyle \frac{3}{4}ft

\displaystyle 1\frac{1}{3}ft

\displaystyle 1\frac{1}{4}ft

\displaystyle \frac{2}{3}ft

Correct answer:

\displaystyle \frac{3}{4}ft

Explanation:

To solve this problem use the formula \displaystyle p=2(a+b), where \displaystyle a and \displaystyle b represent the length of one side from each of the two pairs of adjacent sides. 

The solution is:

\displaystyle 3\frac{1}{2}=2(1+b)

\displaystyle 3\frac{1}{2}\div2=1+b

Make the first fraction into an improper fraction. Then find the reciprocal of the denominator and switch the operation sign:

\displaystyle 3\frac{1}{2}\times\frac{1}{2}

\displaystyle \frac{7}{2}\times \frac{1}{2}=1+b

\displaystyle \frac{7}{4}=1+b

\displaystyle b=\frac{7}{4}-\frac{4}{4}=\frac{3}{4}

Example Question #11 : How To Find The Length Of The Side Of A Kite

Given: Regular Pentagon \displaystyle PENTA with center \displaystyle C. Construct segments \displaystyle \overline{CP} and \displaystyle \overline{CN} to form Quadrilateral \displaystyle CPEN.

True or false: Quadrilateral \displaystyle CPEN is a kite.

Possible Answers:

False

True

Correct answer:

True

Explanation:

Below is regular Pentagon \displaystyle PENTA with center \displaystyle C, a segment drawn from \displaystyle C to each vertex - that is, each of its radii drawn.

Pentagon a

A kite is a quadrilateral with two sets of congruent adjacent sides, with the common length of one pair differing from that of the other. A regular polygon has congruent sides, so \displaystyle \overline{EN} \cong \overline{EP}; also, all radii of a regular polygon are congruent, so \displaystyle \overline{CP} \cong \overline{CN}. It follows by definition that Quadrilateral \displaystyle CPEN is a kite.

Learning Tools by Varsity Tutors