HSPT Quantitative : HSPT Quantitative Skills

Study concepts, example questions & explanations for HSPT Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #40 : How To Manipulate Numbers

\(\displaystyle 62\) is \(\displaystyle 25\) percent of what number?

Possible Answers:

\(\displaystyle 248\)

\(\displaystyle 260\)

\(\displaystyle 186\)

\(\displaystyle 120\)

Correct answer:

\(\displaystyle 248\)

Explanation:

If we represent the unknown number with an \(\displaystyle x\), we have \(\displaystyle 62=.25x\). Divide both sides by \(\displaystyle .25\) to solve for \(\displaystyle x\):

\(\displaystyle x=62/.25=248\)

 

Example Question #41 : Number Manipulation*

What number is \(\displaystyle 16\) less than \(\displaystyle 250\) percent of \(\displaystyle 38\)?

Possible Answers:

\(\displaystyle 79\)

\(\displaystyle 95\)

\(\displaystyle 86\)

\(\displaystyle 52\)

Correct answer:

\(\displaystyle 79\)

Explanation:

First, find  \(\displaystyle 250\) percent of \(\displaystyle 38\):

\(\displaystyle 38\cdot2.50=95\)

Then, subtract \(\displaystyle 16\):

\(\displaystyle 95-16=79\)

Example Question #42 : Number Manipulation*

What is \(\displaystyle 22\) less than \(\displaystyle \frac{3}{4}\) of \(\displaystyle 80\)?

Possible Answers:

\(\displaystyle 35\)

\(\displaystyle 38\)

\(\displaystyle 48\)

\(\displaystyle 60\)

Correct answer:

\(\displaystyle 38\)

Explanation:

First, find  \(\displaystyle \frac{3}{4}\) of \(\displaystyle 80\):

\(\displaystyle \frac{80\cdot3}{4}=60\)

Then, subtract \(\displaystyle 22\):

\(\displaystyle 60-22=38\)

Example Question #43 : Number Manipulation*

What is \(\displaystyle 15\) percent of \(\displaystyle 90\) percent of \(\displaystyle 200\)?

Possible Answers:

\(\displaystyle 16\)

\(\displaystyle 27\)

\(\displaystyle 35\)

\(\displaystyle 37\)

Correct answer:

\(\displaystyle 27\)

Explanation:

\(\displaystyle 90\) percent of \(\displaystyle 200\) is \(\displaystyle 180\):

\(\displaystyle 200\cdot.90=180\)

\(\displaystyle 15\) percent of \(\displaystyle 180\) is \(\displaystyle 27\):

\(\displaystyle 180\cdot.15=27\)

Example Question #44 : Number Manipulation*

What is the difference between \(\displaystyle 6^2\) and \(\displaystyle 6^3\)?

Possible Answers:

\(\displaystyle 36\)

\(\displaystyle 216\)

\(\displaystyle 6\)

\(\displaystyle 180\)

Correct answer:

\(\displaystyle 180\)

Explanation:

First, calculate the exponents:

\(\displaystyle 6^2=6\cdot6=36\)

\(\displaystyle 6^3=6\cdot6\cdot6=216\)

Then subtract to find the difference:

\(\displaystyle 216-36=180\)

Example Question #45 : Number Manipulation*

What is the average of \(\displaystyle \frac{1}{2}\)\(\displaystyle \frac{3}{4}\), and \(\displaystyle 1\)?

Possible Answers:

\(\displaystyle \frac{2}{3}\)

\(\displaystyle \frac{7}{8}\)

\(\displaystyle \frac{3}{4}\)

\(\displaystyle \frac{5}{8}\)

Correct answer:

\(\displaystyle \frac{3}{4}\)

Explanation:

To calculate the average, you can add up the three numbers and divide by three (the number of elements):

\(\displaystyle \frac{\frac{1}{2}+\frac{3}{4}+1}{3}=\frac{\frac{9}{4}}{3}=\frac{3}{4}\)

Also, if the numbers are evenly spaced, the middle number will be the average.

Example Question #46 : Number Manipulation*

What number is \(\displaystyle 7\) less than \(\displaystyle \frac{1}2{}\) of \(\displaystyle 48\)?

Possible Answers:

\(\displaystyle 22\)

\(\displaystyle 17\)

\(\displaystyle 16\)

\(\displaystyle 24\)

Correct answer:

\(\displaystyle 17\)

Explanation:

First, find \(\displaystyle \frac{1}2{}\) of \(\displaystyle 48\):

\(\displaystyle \frac{48}{2}=24\)

Then, subtract \(\displaystyle 7\):

\(\displaystyle 24-7=17\)

Example Question #47 : Number Manipulation*

\(\displaystyle 15\) is \(\displaystyle 20\) percent of what number?

 

Possible Answers:

\(\displaystyle 70\)

\(\displaystyle 75\)

\(\displaystyle 85\)

\(\displaystyle 100\)

Correct answer:

\(\displaystyle 75\)

Explanation:

Representing the unknown number with an \(\displaystyle x\), we know that \(\displaystyle 15=.20x\). Solve for \(\displaystyle x\) by dividing both sides by \(\displaystyle .20\):

\(\displaystyle x=15\div.20=75\)

 

Example Question #48 : Number Manipulation*

What number, when divided by \(\displaystyle 3\), is \(\displaystyle \frac{5}{6}\) of \(\displaystyle 180\)?

Possible Answers:

\(\displaystyle 450\)

\(\displaystyle 350\)

\(\displaystyle 440\)

\(\displaystyle 150\)

Correct answer:

\(\displaystyle 450\)

Explanation:

First, find  \(\displaystyle \frac{5}{6}\) of \(\displaystyle 180\):

\(\displaystyle \frac{180\cdot5}{6}=150\)

Then, multiply by \(\displaystyle 3\) to reverse the division:

\(\displaystyle 150\cdot3=450\)

Example Question #49 : Number Manipulation*

What is \(\displaystyle \frac{3}{4}\) of \(\displaystyle 60\) percent of \(\displaystyle 60\)?

Possible Answers:

\(\displaystyle 65\)

\(\displaystyle 75\)

\(\displaystyle 27\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 27\)

Explanation:

First, find  \(\displaystyle 60\) percent of \(\displaystyle 60\):

\(\displaystyle 60\cdot.60=36\)

Then, find \(\displaystyle \frac{3}{4}\) of that:

\(\displaystyle \frac{36\cdot3}{4}=27\)

Learning Tools by Varsity Tutors