Complex Analysis : Complex Analysis

Study concepts, example questions & explanations for Complex Analysis

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Complex Analysis

Given a complex number \(\displaystyle z=a+bi\), under what conditions is the following equation true?

\(\displaystyle \overline{z}=z\)

Possible Answers:

The equation is always true.

The equation is only true if \(\displaystyle b=0\).

The equation is only true if  \(\displaystyle \vert z\vert>1\).

The equation is never true.

The equation is only true if \(\displaystyle a=0\).

Correct answer:

The equation is only true if \(\displaystyle b=0\).

Explanation:

\(\displaystyle \overline{z}\) denotes the conjugate of \(\displaystyle z\) and is defined as
\(\displaystyle \ovelrine{z}=a-bi\).

 

Substituting this into the equation and simplifying yields:
\(\displaystyle \begin{align*} a-bi&=a+bi\\ a-bi-a-bi&=0\\ -2bi&=0\\ b&=0. \end{align*}\)

 

So the equation is only true if \(\displaystyle b=0\).

Example Question #22 : Complex Analysis

What is the value of  \(\displaystyle \vert e^{i\theta}\vert\), where \(\displaystyle -\pi< \theta\leq\pi\) is in radians?

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 1\)

\(\displaystyle i\)

\(\displaystyle e\)

Not enough information is given.

Correct answer:

\(\displaystyle 1\)

Explanation:

The magnitude of a complex number \(\displaystyle z=re^{i\theta}\) is defined as
\(\displaystyle \vert z\vert=r\).

 

If \(\displaystyle z=e^{i\theta}\), then \(\displaystyle r=1\), so \(\displaystyle \vert e^{i\theta}\vert\)=1.

Example Question #23 : Complex Analysis

Which of the following is equivalent to this expression?

\(\displaystyle (\sqrt3+i)^5\)

Possible Answers:

\(\displaystyle 16+\sqrt3i\)

None of these

\(\displaystyle 32-i\)

\(\displaystyle 9\sqrt3+i\)

\(\displaystyle 5\sqrt3+5i\)

Correct answer:

None of these

Explanation:

Note that \(\displaystyle \sqrt3+i\) lies in the first quadrant of the complex plane.

 

Any nonzero complex number \(\displaystyle a+bi\) can be written in the form \(\displaystyle re^{\theta i}\), where
\(\displaystyle r^2=a^2+b^2\) and
\(\displaystyle \tan(\theta)=\frac{b}{a}\).
(We stipulate that  \(\displaystyle -\pi< \theta\leq\pi\) is in radians.)

Conversely, a nonzero complex number \(\displaystyle re^{\theta i}\) can be written in the form \(\displaystyle a+bi\), where
\(\displaystyle a=r\cos(\theta)\) and
\(\displaystyle b=r\sin(\theta)\).

 

We can convert \(\displaystyle \sqrt3+i\) by using the formulas above:
\(\displaystyle r^2=a^2+b^2=(\sqrt3)^2+1^2=3+1=4\)
\(\displaystyle r=\sqrt4=2\),
and
\(\displaystyle \tan(\theta)=\frac{b}{a}=\frac{1}{\sqrt3}\)
\(\displaystyle \theta=\frac{-7\pi}{6},\frac{\pi}{6}\)

Since \(\displaystyle \frac{\pi}{6}\) lies in the first quadrant of the complex plane, as does \(\displaystyle \sqrt3+i\)\(\displaystyle \theta = \frac{\pi}{6}\).

So \(\displaystyle \sqrt3+i=2e^{\frac{\pi}{6}i}\).

 

We now substitute this into our original expression and expand.
\(\displaystyle \begin{align*} (3+i)^5&=(2e^{\frac{\pi}{6}i})^5\\ &=2^5e^{5\frac{\pi}{6}i}\\ &=32e^{\frac{5\pi}{6}i} \end{align*}\).

 

Finally, we convert this number back to the form \(\displaystyle a+bi\).
\(\displaystyle a=r\cos(\theta)=32\cos(\frac{5\pi}{6})=32(\frac{-\sqrt3}{2})=-16\sqrt3\)
\(\displaystyle b=r\sin(\theta)=32\sin(\frac{5\pi}{6})=32(\frac{1}{2})=16\)

 

So our final answer is \(\displaystyle -16\sqrt3+16i\).

Example Question #24 : Complex Analysis

Which of the following is equivalent to this expression?

\(\displaystyle \left(\frac{\sqrt2}{2}+\frac{\sqrt2}{2}i\right)^{10}\)

Possible Answers:

\(\displaystyle 4\sqrt2i\)

\(\displaystyle -\frac{1}{32}\)

\(\displaystyle i\)

None of these

\(\displaystyle \frac{\sqrt2}{8}+\frac{\sqrt2}{8}i\)

Correct answer:

\(\displaystyle i\)

Explanation:

Note that \(\displaystyle \frac{\sqrt2}{2}+\frac{\sqrt2}{2}i\) lies in the first quadrant of the complex plane.

 

Any nonzero complex number \(\displaystyle a+bi\) can be written in the form \(\displaystyle re^{\theta i}\), where
\(\displaystyle r^2=a^2+b^2\) and
\(\displaystyle \tan(\theta)=\frac{b}{a}\).
(We stipulate that  \(\displaystyle -\pi< \theta\leq\pi\) is in radians.)

Conversely, a nonzero complex number \(\displaystyle re^{\theta i}\) can be written in the form \(\displaystyle a+bi\), where
\(\displaystyle a=r\cos(\theta)\) and
\(\displaystyle b=r\sin(\theta)\).

 

We can convert \(\displaystyle \frac{\sqrt2}{2}+\frac{\sqrt2}{2}i\) by using the formulas above:
\(\displaystyle r^2=a^2+b^2=\left(\frac{\sqrt2}{2}\right)^2+\left(\frac{\sqrt2}{2}\right)^2=\frac{1}{2}+\frac{1}{2}=1\)
\(\displaystyle r=\sqrt1=1\),
and
\(\displaystyle \tan(\theta)=\frac{b}{a}=\frac{\frac{\sqrt2}{2}}{\frac{\sqrt2}{2}}=1\)
\(\displaystyle \theta=\frac{-3\pi}{4},\frac{\pi}{4}\)

Since \(\displaystyle \frac{\pi}{4}\) lies in the first quadrant of the complex plane, as does \(\displaystyle \frac{\sqrt2}{2}+\frac{\sqrt2}{2}i\)\(\displaystyle \theta=\frac{\pi}{4}\).

So \(\displaystyle \frac{\sqrt2}{2}+\frac{\sqrt2}{2}i=e^{\frac{\pi}{4}i}\).

 

We now substitute this into our original expression and expand.
\(\displaystyle \begin{align*} \left(\frac{\sqrt2}{2}+\frac{\sqrt2}{2}\right)^{10}&=(e^{\frac{\pi}{4}i})^{10}\\ &=e^{\frac{10\pi}{4}i} \end{align*}\).
Because \(\displaystyle -\pi< \theta\leq\pi\),  we substitute \(\displaystyle \frac{10\pi}{4}\) with the coterminal angle \(\displaystyle \frac{2\pi}{4}=\frac{\pi}{2}\).
\(\displaystyle \left(\frac{\sqrt2}{2}+\frac{\sqrt2}{2}i\right)^{10}=e^{\frac{\pi}{2}i}\).

 

Finally, we convert this number back to the form \(\displaystyle a+bi\).
\(\displaystyle a=r\cos(\theta)=\cos(\frac{\pi}{2})=0\)
\(\displaystyle b=r\sin(\theta)=\sin(\frac{\pi}{2})=1\)

 

So our final answer is \(\displaystyle 0+1i=i\).

Example Question #25 : Complex Analysis

If

\(\displaystyle (-\sqrt2+\sqrt2i)(\frac{i}{4})(z)=1,\)

then what is the value of \(\displaystyle z\)?

Possible Answers:

\(\displaystyle -2-2i\)

\(\displaystyle \frac{\sqrt2}{2}-\frac{\sqrt2}{2}i\)

\(\displaystyle -\sqrt2+\sqrt2i\)

\(\displaystyle 2\sqrt2i\)

None of these

Correct answer:

\(\displaystyle -\sqrt2+\sqrt2i\)

Explanation:

Note that the \(\displaystyle 1\) on the right side of the equation can be written as \(\displaystyle e^{0i}\).

 

Multiplying the first two terms on the left side yields
\(\displaystyle (-\sqrt2+\sqrt2i)(\frac{i}{4})=\frac{-\sqrt2}{4}-\frac{\sqrt2}{4}i\).
Note that this number lies in the third quadrant of the complex plane.

 

We now convert \(\displaystyle -\frac{\sqrt2}{4}-\frac{\sqrt2}{4}i\) from the form \(\displaystyle a+bi\) to the form \(\displaystyle re^{i\theta}\)using the identities
\(\displaystyle r^2=a^2+b^2\) and
\(\displaystyle \tan(\theta)=\frac{b}{a}\).
\(\displaystyle r^2=a^2+b^2=\left(-\frac{\sqrt2}{4}\right)^2+\left(-\frac{\sqrt2}{4}\right)^2=\frac{2}{16}+\frac{2}{16}=\frac{4}{16}=\frac{1}{4}\)
\(\displaystyle r=\sqrt{\frac{1}{4}}=\frac{1}{2}\)
\(\displaystyle \tan(\theta)=\frac{b}{a}=\frac{-\frac{\sqrt2}{4}}{-\frac{\sqrt2}{4}}=1\)
\(\displaystyle \theta=-\frac{3\pi}{4},\frac{\pi}{4}\).
Since \(\displaystyle -\frac{3\pi}{4}\) lies in the third quadrant of the complex plane, as does \(\displaystyle -\frac{\sqrt2}{4}-\frac{\sqrt2}{4}i\)\(\displaystyle \theta=-\frac{3\pi}{4}\).
So our new form is \(\displaystyle \frac{1}{2}e^{-\frac{3\pi}{4}i}\).

 

Our equation now reduces to
\(\displaystyle (\frac{1}{2}e^{-\frac{3\pi}{4}i})(z)=e^{0i}\).
We solve for z by dividing.
\(\displaystyle \begin{align*} z&=\frac{e^{0i}}{\frac{1}{2}e^{-\frac{3\pi}{4}i}}\\ &=\frac{1}{\frac{1}{2}}e^{0i-\frac{-3\pi}{4}i}\\ &=2e^{\frac{3\pi}{4}i}. \end{align*}\)

 

Finally, we convert this to the form \(\displaystyle a+bi\) by using the identities
\(\displaystyle a=r\cos(\theta)\) and
\(\displaystyle b=r\sin(\theta)\).
\(\displaystyle a=r\cos(\theta)=2\cos(\frac{3\pi}{4})=2(-\frac{\sqrt2}{2})=-\sqrt2\)
\(\displaystyle b=r\sin(\theta)=2\sin(\frac{3\pi}{4})=2(\frac{\sqrt2}{2})=\sqrt2\).

 

So our final answer is \(\displaystyle z=-\sqrt2+\sqrt2i\).

Example Question #26 : Complex Analysis

Given a complex number \(\displaystyle z=a+bi\), under what conditions is the following equation true?

\(\displaystyle \overline{z}=-z\)

Possible Answers:

The equation is only true if  \(\displaystyle \vert z\vert = \vert\overline{z}\vert\).

The equation is only true if \(\displaystyle a=b\).

The equation is only true if \(\displaystyle a=0\).

The equation is only true if \(\displaystyle b=0\).

The equation is never true.

Correct answer:

The equation is only true if \(\displaystyle a=0\).

Explanation:

\(\displaystyle \overline{z}\) denotes the conjugate of \(\displaystyle z\) and is defined as
\(\displaystyle \ovelrine{z}=a-bi\).

 

Substituting this into the equation and simplifying yields:
\(\displaystyle \begin{align*} a-bi&=-(a+bi)\\ a-bi&=-a-bi\\ a-bi+a+bi&=0\\ 2a&=0\\ a&=0 \end{align*}\)

 

So the equation is only true if \(\displaystyle a=0\).

Example Question #1 : Complex Functions

What does the sum below equal?

\(\displaystyle \sum_{n=1}^{m}(e^{2\pi i/m})^{n}\)

Another way of asking this question is what is the sum of the \(\displaystyle m\) roots of unity.

\(\displaystyle m\in \mathbb{N}\)

Possible Answers:

\(\displaystyle e\)

\(\displaystyle 0\)

\(\displaystyle \pi\)

\(\displaystyle e^\pi\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 0\)

Explanation:

As messy as it looks, this is just a geometric series.

we will use the partial sum formula for the geometric series.

\(\displaystyle S_{n}=\frac{a_{1}(1-r^n)}{1-r}\)

 

\(\displaystyle a_{1}=e^{2\pi i/m}\)

 

\(\displaystyle r=e^{2\pi i/m}\)

 

\(\displaystyle S_{m}=\frac{a_{1}(1-r^m)}{1-r}=\frac{e^{2\pi i/m}(1-{\color{Red} (e^{2\pi i/m})^m})}{1-e^{2\pi i/m}}\)

 

the red part is the only part that matters....the \(\displaystyle m's\) cancel out leaving....

 

\(\displaystyle S_{m}=\frac{a_{1}(1-r^m)}{1-r}=\frac{e^{2\pi i/m}(1-{\color{Red} (e^{2\pi i})})}{1-e^{2\pi i/m}}\)

 

and...

 

\(\displaystyle e^{2\pi i}=1\)

 

thus we have...

 

\(\displaystyle S_{m}=\frac{a_{1}(1-r^m)}{1-r}=\frac{e^{2\pi i/m}(1-{\color{Red} (1)})}{1-e^{2\pi i/m}}\)

 

which gives the answer of zero.

 

\(\displaystyle S_{m}=0\)

Example Question #2 : Complex Functions

Consider the function \(\displaystyle f(z) = |z|^2\)

Find an expression for \(\displaystyle f'(z)\) (hint: use the definition of derivatve) and where it exists in the complex plane.

Possible Answers:

\(\displaystyle f'(z) = 0 \text{ where } z=0\)

\(\displaystyle f'(z) = 2|z| \text{ } \forall z\)

\(\displaystyle f'(z) = 2z \text{ } \forall z\)

\(\displaystyle f'(z) = 2z \text{ where } z=0\)

\(\displaystyle f'(z) = 2|z| \text{ where } z=0\)

Correct answer:

\(\displaystyle f'(z) = 0 \text{ where } z=0\)

Explanation:

Applying the definition of derivative, we have that

\(\displaystyle f'(z) = \lim_{\Delta z \to 0} \frac{f(z+\Delta z) - f(z)}{\Delta z} \\\)

\(\displaystyle f'(z) = \lim_{\Delta z \to 0}\frac{|z+\Delta z|^2 - |z|^2}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z+\Delta z)(\bar{z}+\overline{\Delta z}) - z\overline{z}}{\Delta z} = \lim_{\Delta z \to 0} \overline{z} + \overline{\Delta z} + z \frac{\overline{\Delta z}}{\Delta z}\)

If the limits exists, it can be found by letting \(\displaystyle \Delta z\) approach \(\displaystyle 0\) in any manner. 

In particular, if we it approach through the points \(\displaystyle (\Delta x , 0 )\), we have that 

\(\displaystyle \overline{\Delta z} = \overline{\Delta x + i0} = \Delta x - i0 = \Delta x + i0 = \Delta z\)

A similar approach with \(\displaystyle (0, \Delta y)\) implies that \(\displaystyle \overline{\Delta z } = -\Delta z\)

Since limits are unique, these two approaches imply that 

\(\displaystyle \overline{z} + z = \overline{z} - z\), which implies \(\displaystyle z=0\) and \(\displaystyle f'(z)\) cannot exist when \(\displaystyle z \neq 0\)

Example Question #1 : Analytic And Harmonic Functions

Find a Harmonic Conjugate \(\displaystyle v(x,y)\) of \(\displaystyle u(x,y) = 2x-x^3+3xy^2\)

Possible Answers:

\(\displaystyle v(x,y) = 2-3x^2+y^3\)

\(\displaystyle v(x,y) = 2y-3x^2y+y^3\)

\(\displaystyle v(x,y) = 2y-x^2y + y^3\)

\(\displaystyle v(x,y) = 2y-x^3y+3xy^2\)

\(\displaystyle v(x,y) = 2x-x^3+y^3\)

Correct answer:

\(\displaystyle v(x,y) = 2y-3x^2y+y^3\)

Explanation:

\(\displaystyle v(x,y)\)is said to be a harmonic conjugate of \(\displaystyle u(x,y)\) if their are both harmonic in their domain and their first order partial derivatives satisfy the Cauchy-Riemann Equations. Computing the partial derivatives

\(\displaystyle u_x(x,y) = 2-3x^2+3y^2 = v_y(x,y)\)

\(\displaystyle v(x,y) = 2y-3x^2y+y^3 + C\)

where \(\displaystyle C\) is any arbitrary constant.

Example Question #2 : Analytic And Harmonic Functions

Given \(\displaystyle f(z) = z - \bar{z}\), where does \(\displaystyle f'(z)\) exist?

Possible Answers:

The Entire Complex Plane

\(\displaystyle x = 0\)

 

\(\displaystyle y = 0\)

\(\displaystyle z=0\)

Nowhere

Correct answer:

Nowhere

Explanation:

Rewriting \(\displaystyle f(z)\) in real and complex components, we have that

\(\displaystyle f(z) = z- \bar{z} = (x+yi) - (x-yi) = 2yi\)

So this implies that \(\displaystyle f(z) = f(x + yi) = u(x,y) + v(x,y)i\)

where \(\displaystyle u(x,y) = 0 \text{ and } v(x,y) = 2y\)

Therefore, checking the Cauchy-Riemann Equations, we have that

\(\displaystyle u_x(x,y) = 0 \neq v_y(x,y) = 2\)

So the Cauchy-Riemann equations are never satisfied on the entire complex plane, so \(\displaystyle f(z)\) is differentiable nowhere.

Learning Tools by Varsity Tutors