Common Core: 5th Grade Math : Common Core Math: Grade 5

Study concepts, example questions & explanations for Common Core: 5th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1282 : Ssat Middle Level Quantitative (Math)

Steve has \(\displaystyle 1\) gallon of soda. Each glass holds \(\displaystyle \frac{1}{6}\) of a gallon. How many glasses can he fill? 

 

Possible Answers:

\(\displaystyle 24\)

\(\displaystyle 18\)

\(\displaystyle 12\)

\(\displaystyle 6\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 6\)

Explanation:

Think: How many \(\displaystyle \frac{1}{6}\)s are in \(\displaystyle 1\) whole? 

To solve \(\displaystyle 1\div\frac{1}{6}\) we multiply by the reciprocal

\(\displaystyle \frac{1}{1}\times\frac{6}{1}=\frac{6}{1}=6\)

6

Example Question #147 : Fractions

Brian has \(\displaystyle 2\) gallons of soda. Each glass holds \(\displaystyle \frac{1}{6}\) of a gallon. How many glasses can he fill? 

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 12\)

\(\displaystyle 18\)

\(\displaystyle 36\)

\(\displaystyle 24\)

Correct answer:

\(\displaystyle 12\)

Explanation:

Think: How many \(\displaystyle \frac{1}{6}\)s are in \(\displaystyle 2\) wholes? 

To solve \(\displaystyle 2\div\frac{1}{6}\) we multiply by the reciprocal

\(\displaystyle \frac{2}{1}\times\frac{6}{1}=\frac{12}{1}=12\)

12

Example Question #1461 : Common Core Math: Grade 5

Brian has \(\displaystyle 3\) gallons of soda. Each glass holds \(\displaystyle \frac{1}{6}\) of a gallon. How many glasses can he fill? 

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 18\)

\(\displaystyle 36\)

\(\displaystyle 12\)

\(\displaystyle 24\)

Correct answer:

\(\displaystyle 18\)

Explanation:

Think: How many \(\displaystyle \frac{1}{6}\)s are in \(\displaystyle 3\) wholes? 

To solve \(\displaystyle 3\div\frac{1}{6}\) we multiply by the reciprocal

\(\displaystyle \frac{3}{1}\times\frac{6}{1}=\frac{18}{1}=18\)

18

Example Question #1461 : Common Core Math: Grade 5

Kate has \(\displaystyle 12\) gallons of water. Each water bottle holds \(\displaystyle \frac{1}{2}\) of a gallon. How many water bottles can she fill? 

 

 

Possible Answers:

\(\displaystyle 22\)

\(\displaystyle 24\)

\(\displaystyle 30\)

\(\displaystyle 26\)

\(\displaystyle 28\)

Correct answer:

\(\displaystyle 24\)

Explanation:

Think: How many \(\displaystyle \frac{1}{2}\)s are in \(\displaystyle 12\) wholes? 

To solve \(\displaystyle 12\div\frac{1}{2}\) we multiply by the reciprocal

\(\displaystyle \frac{12}{1}\times\frac{2}{1}=\frac{24}{1}=24\)

24

Example Question #143 : How To Divide Fractions

Kate has \(\displaystyle 11\) gallons of water. Each water bottle holds \(\displaystyle \frac{1}{2}\) of a gallon. How many water bottles can she fill? 

 

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 26\)

\(\displaystyle 28\)

\(\displaystyle 22\)

\(\displaystyle 24\)

Correct answer:

\(\displaystyle 22\)

Explanation:

Think: How many \(\displaystyle \frac{1}{2}\)s are in \(\displaystyle 11\) wholes? 

To solve \(\displaystyle 11\div\frac{1}{2}\) we multiply by the reciprocal

\(\displaystyle \frac{11}{1}\times\frac{2}{1}=\frac{22}{1}=22\)

22

Example Question #1461 : Common Core Math: Grade 5

Lauren has \(\displaystyle 10\) gallons of water. Each water bottle holds \(\displaystyle \frac{1}{2}\) of a gallon. How many water bottles can she fill? 

 

 

Possible Answers:

\(\displaystyle 12\)

\(\displaystyle 14\)

\(\displaystyle 16\)

\(\displaystyle 20\)

\(\displaystyle 18\)

Correct answer:

\(\displaystyle 20\)

Explanation:

Think: How many \(\displaystyle \frac{1}{2}\)s are in \(\displaystyle 10\) wholes? 

To solve \(\displaystyle 10\div\frac{1}{2}\) we multiply by the reciprocal

\(\displaystyle \frac{10}{1}\times\frac{2}{1}=\frac{20}{1}=20\)

20

Example Question #151 : Fractions

Lauren has \(\displaystyle 9\) gallons of water. Each water bottle holds \(\displaystyle \frac{1}{2}\) of a gallon. How many water bottles can she fill? 

 

 

Possible Answers:

\(\displaystyle 16\)

\(\displaystyle 18\)

\(\displaystyle 14\)

\(\displaystyle 20\)

\(\displaystyle 12\)

Correct answer:

\(\displaystyle 18\)

Explanation:

Think: How many \(\displaystyle \frac{1}{2}\)s are in \(\displaystyle 9\) wholes? 

To solve \(\displaystyle 9\div\frac{1}{2}\) we multiply by the reciprocal

\(\displaystyle \frac{9}{1}\times\frac{2}{1}=\frac{18}{1}=18\)

18

Example Question #152 : Fractions

Ashley has \(\displaystyle 8\) gallons of water. Each water bottle holds \(\displaystyle \frac{1}{2}\) of a gallon. How many water bottles can she fill? 

 

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 14\)

\(\displaystyle 18\)

\(\displaystyle 12\)

\(\displaystyle 16\)

Correct answer:

\(\displaystyle 16\)

Explanation:

Think: How many \(\displaystyle \frac{1}{2}\)s are in \(\displaystyle 8\) wholes? 

To solve \(\displaystyle 8\div\frac{1}{2}\) we multiply by the reciprocal

\(\displaystyle \frac{8}{1}\times\frac{2}{1}=\frac{16}{1}=16\)

16

Example Question #153 : Fractions

Ashley has \(\displaystyle 7\) gallons of water. Each water bottle holds \(\displaystyle \frac{1}{2}\) of a gallon. How many water bottles can she fill? 

 

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 18\)

\(\displaystyle 12\)

\(\displaystyle 14\)

\(\displaystyle 16\)

Correct answer:

\(\displaystyle 14\)

Explanation:

Think: How many \(\displaystyle \frac{1}{2}\)s are in \(\displaystyle 7\) wholes? 

To solve \(\displaystyle 7\div\frac{1}{2}\) we multiply by the reciprocal

\(\displaystyle \frac{7}{1}\times\frac{2}{1}=\frac{14}{1}=14\)

14

Example Question #154 : Fractions

Tracy has \(\displaystyle 6\) gallons of water. Each water bottle holds \(\displaystyle \frac{1}{2}\) of a gallon. How many water bottles can she fill? 

 

 

Possible Answers:

\(\displaystyle 18\)

\(\displaystyle 12\)

\(\displaystyle 14\)

\(\displaystyle 16\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 12\)

Explanation:

Think: How many \(\displaystyle \frac{1}{2}\)s are in \(\displaystyle 6\) wholes? 

To solve \(\displaystyle 6\div\frac{1}{2}\) we multiply by the reciprocal

\(\displaystyle \frac{6}{1}\times\frac{2}{1}=\frac{12}{1}=12\)

12

Learning Tools by Varsity Tutors