Common Core: 4th Grade Math : Number & Operations: €”Fractions

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #731 : Fractions

Select the answer choice that is equal to \displaystyle 6\times\frac{7}{10}

 

Possible Answers:

\displaystyle 42\times\frac{1}{10}

\displaystyle 48\times\frac{1}{10}

\displaystyle 15\times\frac{1}{10}

\displaystyle 36\times\frac{1}{10}

\displaystyle 22\times\frac{1}{10}

Correct answer:

\displaystyle 42\times\frac{1}{10}

Explanation:

When we multiply a whole number by a fraction, we multiply the whole number by the numerator, and the denominator stays the same. 

\displaystyle \frac{6}{1}\times\frac{7}{10}=\frac{42}{10}

\displaystyle \frac{42}{1}\times\frac{1}{10}=\frac{42}{10}

Example Question #733 : Fractions

Select the answer choice that is equal to \displaystyle 7\times\frac{7}{10}

 

Possible Answers:

\displaystyle 40\times\frac{1}{10}

\displaystyle 20\times\frac{2}{10}

\displaystyle 40\times\frac{2}{10}

\displaystyle 49\times\frac{1}{10}

\displaystyle 20\times\frac{1}{10}

Correct answer:

\displaystyle 49\times\frac{1}{10}

Explanation:

When we multiply a whole number by a fraction, we multiply the whole number by the numerator, and the denominator stays the same. 

\displaystyle \frac{7}{1}\times\frac{7}{10}=\frac{49}{10}

\displaystyle \frac{49}{1}\times\frac{1}{10}=\frac{49}{10}

Example Question #1211 : Numbers And Operations

Andy is having a party. If each person at a party will eat \displaystyle \frac{3}{8} of a pound of peanuts, and there will be \displaystyle 4 people at the party, how many pounds of peanuts will Andy need? Select the choice with the whole numbers that your answer will be between. 

Possible Answers:

\displaystyle 1 and \displaystyle 2

\displaystyle 4 and \displaystyle 5

\displaystyle 5 and \displaystyle 6

\displaystyle 3 and \displaystyle 4

\displaystyle 2 and \displaystyle 3

Correct answer:

\displaystyle 1 and \displaystyle 2

Explanation:

\displaystyle \frac{4}{1}\times\frac{3}{8}=\frac{12}{8}

\displaystyle \frac{12}{8}=1\frac{4}{8} because \displaystyle 8 can go into \displaystyle 12 one time, with \displaystyle 4 left over. 

 

\displaystyle 1\frac{4}{8} is between the whole numbers \displaystyle 1 and \displaystyle 2

Example Question #1 : Solve Word Problems Involving Multiplication Of A Fraction By A Whole Number: Ccss.Math.Content.4.Nf.B.4c

Andy is having a party. If each person at a party will eat \displaystyle \frac{4}{8} of a pound of peanuts, and there will be \displaystyle 7 people at the party, how many pounds of peanuts will Andy need? Select the choice with the whole numbers that your answer will be between. 

 

Possible Answers:

\displaystyle 1 and \displaystyle 2

\displaystyle 2 and \displaystyle 3

\displaystyle 4 and \displaystyle 5

\displaystyle 3 and \displaystyle 4

\displaystyle 5 and \displaystyle 6

Correct answer:

\displaystyle 3 and \displaystyle 4

Explanation:

\displaystyle \frac{7}{1}\times\frac{4}{8}=\frac{28}{8}

\displaystyle \frac{28}{8}=3\frac{4}{8} because \displaystyle 8 can go into \displaystyle 28 three times, with \displaystyle 4 left over. 

 

\displaystyle 3\frac{4}{8} is between the whole numbers \displaystyle 3 and \displaystyle 4

Example Question #2 : Solve Word Problems Involving Multiplication Of A Fraction By A Whole Number: Ccss.Math.Content.4.Nf.B.4c

Andy is having a party. If each person at a party will eat \displaystyle \frac{2}{8} of a pound of peanuts, and there will be \displaystyle 15 people at the party, how many pounds of peanuts will Andy need? Select the choice with the whole numbers that your answer will be between. 

 

Possible Answers:

\displaystyle 4 and \displaystyle 5

\displaystyle 1 and \displaystyle 2

\displaystyle 2 and \displaystyle 3

\displaystyle 5 and \displaystyle 6

\displaystyle 3 and \displaystyle 4

Correct answer:

\displaystyle 3 and \displaystyle 4

Explanation:

\displaystyle \frac{15}{1}\times\frac{2}{8}=\frac{30}{8}

\displaystyle \frac{30}{8}=3\frac{6}{8} because \displaystyle 8 can go into \displaystyle 30 three times, with \displaystyle 6 left over. 

 

\displaystyle 3\frac{6}{8} is between the whole numbers \displaystyle 3 and \displaystyle 4

Example Question #4 : Solve Word Problems Involving Multiplication Of A Fraction By A Whole Number: Ccss.Math.Content.4.Nf.B.4c

Sara is having her family over for a cookout. If each person at the cookout will eat \displaystyle \frac{1}{4} of a pound of hamburger, and there will be \displaystyle 5 people at the cookout, how many pounds of hamburger will Sara need? Select the choice with the whole numbers that your answer will be between. 

 

Possible Answers:

\displaystyle 1 and \displaystyle 2

\displaystyle 5 and \displaystyle 6

\displaystyle 3 and \displaystyle 4

\displaystyle 2 and \displaystyle 3

\displaystyle 4 and \displaystyle 5

Correct answer:

\displaystyle 1 and \displaystyle 2

Explanation:

\displaystyle \frac{5}{1}\times\frac{1}{4}=\frac{5}{4}

\displaystyle \frac{5}{4}=1\frac{1}{4} because \displaystyle 4 can go into \displaystyle 5 one time, with \displaystyle 1 left over. 

 

\displaystyle 1\frac{1}{4} is between the whole numbers \displaystyle 1 and \displaystyle 2

Example Question #5 : Solve Word Problems Involving Multiplication Of A Fraction By A Whole Number: Ccss.Math.Content.4.Nf.B.4c

Sara is having her family over for a cookout. If each person at the cookout will eat \displaystyle \frac{3}{4} of a pound of hamburger, and there will be \displaystyle 10 people at the cookout, how many pounds of hamburger will Sara need? Select the choice with the whole numbers that your answer will be between. 

 

Possible Answers:

\displaystyle 7 and \displaystyle 8

\displaystyle 4 and \displaystyle 5

\displaystyle 6 and \displaystyle 7

\displaystyle 5 and \displaystyle 6

\displaystyle 3 and \displaystyle 4

Correct answer:

\displaystyle 7 and \displaystyle 8

Explanation:

\displaystyle \frac{10}{1}\times\frac{3}{4}=\frac{30}{4}

\displaystyle \frac{30}{4}=7\frac{2}{4} because \displaystyle 4 can go into \displaystyle 30 seven times, with \displaystyle 2 left over. 

 

\displaystyle 7\frac{2}{4} is between the whole numbers \displaystyle 7 and \displaystyle 8

Example Question #6 : Solve Word Problems Involving Multiplication Of A Fraction By A Whole Number: Ccss.Math.Content.4.Nf.B.4c

Sara is having her family over for a cookout. If each person at the cookout will eat \displaystyle \frac{2}{4} of a pound of hamburger, and there will be \displaystyle 7 people at the cookout, how many pounds of hamburger will Sara need? Select the choice with the whole numbers that your answer will be between. 

 

Possible Answers:

\displaystyle 7 and \displaystyle 8

\displaystyle 3 and \displaystyle 4

\displaystyle 5 and \displaystyle 6

\displaystyle 2 and \displaystyle 3

\displaystyle 6 and \displaystyle 7

Correct answer:

\displaystyle 3 and \displaystyle 4

Explanation:

\displaystyle \frac{7}{1}\times\frac{2}{4}=\frac{14}{4}

\displaystyle \frac{14}{4}=3\frac{2}{4} because \displaystyle 4 can go into \displaystyle 14 three times, with \displaystyle 2 left over. 

 

\displaystyle 3\frac{2}{4} is between the whole numbers \displaystyle 3 and \displaystyle 4

Example Question #7 : Solve Word Problems Involving Multiplication Of A Fraction By A Whole Number: Ccss.Math.Content.4.Nf.B.4c

Linda is having her friends over for a game night. If each person at the game night will drink \displaystyle \frac{1}{5} of a liter of soda, and there will be \displaystyle 17 people at the game night, how many liters of soda will Linda need? Select the choice with the whole numbers that your answer will be between. 

 

Possible Answers:

\displaystyle 7 and \displaystyle 8

\displaystyle 3 and \displaystyle 4

\displaystyle 4 and \displaystyle 5

\displaystyle 5 and \displaystyle 6

\displaystyle 6 and \displaystyle 7

Correct answer:

\displaystyle 3 and \displaystyle 4

Explanation:

\displaystyle \frac{17}{1}\times\frac{1}{5}=\frac{17}{5}

\displaystyle \frac{17}{5}=3\frac{2}{5} because \displaystyle 5 can go into \displaystyle 17 three times, with \displaystyle 2 left over. 

 

\displaystyle 3\frac{2}{5} is between the whole numbers \displaystyle 3 and \displaystyle 4

Example Question #1 : Solve Word Problems Involving Multiplication Of A Fraction By A Whole Number: Ccss.Math.Content.4.Nf.B.4c

Linda is having her friends over for a game night. If each person at the game night will drink \displaystyle \frac{2}{5} of a liter of soda, and there will be \displaystyle 6 people at the game night, how many liters of soda will Linda need? Select the choice with the whole numbers that your answer will be between. 

 

Possible Answers:

\displaystyle 4 and \displaystyle 5

\displaystyle 3 and \displaystyle 4

\displaystyle 2 and \displaystyle 3

\displaystyle 5 and \displaystyle 6

\displaystyle 1 and \displaystyle 2

Correct answer:

\displaystyle 2 and \displaystyle 3

Explanation:

\displaystyle \frac{6}{1}\times\frac{2}{5}=\frac{12}{5}

\displaystyle \frac{12}{5}=2\frac{2}{5} because \displaystyle 5 can go into \displaystyle 12 two times, with \displaystyle 2 left over. 

 

\displaystyle 2\frac{2}{5} is between the whole numbers \displaystyle 2 and \displaystyle 3

Learning Tools by Varsity Tutors