Common Core: 4th Grade Math : Common Core Math: Grade 4

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #6 : Subtracting Mixed Numbers

\(\displaystyle 14\frac{6}{11}-5\frac{2}{11}\)

 

Possible Answers:

\(\displaystyle 7\frac{4}{11}\)

\(\displaystyle 8\frac{4}{11}\)

\(\displaystyle 19\frac{8}{11}\)

\(\displaystyle 18\frac{7}{11}\)

\(\displaystyle 9\frac{4}{11}\)

Correct answer:

\(\displaystyle 9\frac{4}{11}\)

Explanation:

When we subtract mixed numbers, we subtract whole numbers by whole numbers and fractions by fractions. 

\(\displaystyle 14-5=9\)

\(\displaystyle \frac{6}{11}-\frac{2}{11}=\frac{4}{11}\)

Remember, when we are subtracting fractions we must have common denominators and we only subtract the numerators. 

Example Question #513 : Fractions

Solve the following: 

\(\displaystyle 43\frac{5}{9}-37\frac{4}{9}\)

Possible Answers:

\(\displaystyle 7\frac{1}{9}\)

\(\displaystyle 7\frac{1}{8}\)

\(\displaystyle 6\frac{1}{9}\)

\(\displaystyle 6\frac{1}{8}\)

\(\displaystyle 6\frac{2}{9}\)

Correct answer:

\(\displaystyle 6\frac{1}{9}\)

Explanation:

When we subtract mixed numbers, we subtract whole numbers by whole numbers and fractions by fractions. 

\(\displaystyle 43-37=6\)

\(\displaystyle \frac{5}{9}-\frac{4}{9}=\frac{1}{9}\)

Remember, when we are subtracting fractions we must have common denominators and we only subtract the numerators. 

Example Question #7 : Subtracting Mixed Numbers

\(\displaystyle 27\frac{4}{5}-13\frac{1}{5}\)

 

Possible Answers:

\(\displaystyle 14\frac{4}{5}\)

\(\displaystyle 40\frac{5}{5}\)

\(\displaystyle 14\frac{3}{5}\)

\(\displaystyle 40\frac{2}{5}\)

\(\displaystyle 14\frac{2}{5}\)

Correct answer:

\(\displaystyle 14\frac{3}{5}\)

Explanation:

When we subtract mixed numbers, we subtract whole numbers by whole numbers and fractions by fractions. 

\(\displaystyle 27-13=14\)

\(\displaystyle \frac{4}{5}-\frac{1}{5}=\frac{3}{5}\)

Remember, when we are subtracting fractions we must have common denominators and we only subtract the numerators. 

Example Question #8 : Subtracting Mixed Numbers

\(\displaystyle 36\frac{3}{4}-16\frac{2}{4}\)

 

Possible Answers:

\(\displaystyle 20\frac{2}{4}\)

\(\displaystyle 19\frac{1}{4}\)

\(\displaystyle 19\frac{2}{4}\)

\(\displaystyle 20\frac{1}{4}\)

\(\displaystyle 52\frac{6}{4}\)

Correct answer:

\(\displaystyle 20\frac{1}{4}\)

Explanation:

When we subtract mixed numbers, we subtract whole numbers by whole numbers and fractions by fractions. 

\(\displaystyle 36-16=20\)

\(\displaystyle \frac{3}{4}-\frac{2}{4}=\frac{1}{4}\)

Remember, when we are subtracting fractions we must have common denominators and we only subtract the numerators. n 

Example Question #1151 : Common Core Math: Grade 4

\(\displaystyle 29\frac{5}{13}-8\frac{2}{13}\)

 

Possible Answers:

\(\displaystyle 22\frac{7}{13}\)

\(\displaystyle 22\frac{3}{13}\)

\(\displaystyle 21\frac{3}{13}\)

\(\displaystyle 23\frac{3}{13}\)

\(\displaystyle 21\frac{7}{13}\)

Correct answer:

\(\displaystyle 21\frac{3}{13}\)

Explanation:

When we subtract mixed numbers, we subtract whole numbers by whole numbers and fractions by fractions. 

\(\displaystyle 29-8=21\)

\(\displaystyle \frac{5}{13}-\frac{2}{13}=\frac{3}{13}\)

Remember, when we are subtracting fractions we must have common denominators and we only subtract the numerators. 

Example Question #1152 : Common Core Math: Grade 4

\(\displaystyle 53\frac{5}{7}-21\frac{2}{7}\)

 

Possible Answers:

\(\displaystyle 32\frac{2}{7}\)

\(\displaystyle 32\frac{3}{7}\)

\(\displaystyle 23\frac{2}{7}\)

\(\displaystyle 35\frac{3}{7}\)

\(\displaystyle 23\frac{3}{7}\)

Correct answer:

\(\displaystyle 32\frac{3}{7}\)

Explanation:

When we subtract mixed numbers, we subtract whole numbers by whole numbers and fractions by fractions. 

\(\displaystyle 53-21=32\)

\(\displaystyle \frac{5}{7}-\frac{2}{7}=\frac{3}{7}\)

Remember, when we are subtracting fractions we must have common denominators and we only subtract the numerators. 

Example Question #1153 : Common Core Math: Grade 4

In Charlie's pantry, \(\displaystyle \frac{2}{5}\) of the items are potato chips, \(\displaystyle \frac{1}{5}\) of the items are tortilla chips, and the rest are cookies or crackers. What fraction are chips?

Possible Answers:

\(\displaystyle \frac{4}{5}\)

\(\displaystyle \frac{5}{5}\)

\(\displaystyle \frac{3}{5}\)

\(\displaystyle \frac{2}{5}\)

\(\displaystyle \frac{1}{5}\)

Correct answer:

\(\displaystyle \frac{3}{5}\)

Explanation:

To solve this problem, we are putting the potato chips and the tortilla chips together, so we add the fractions. 

\(\displaystyle \frac{2}{5}+\frac{1}{5}=\frac{3}{5}\)

3 5

Example Question #2 : Solve Word Problems Involving Addition And Subtraction Of Fractions: Ccss.Math.Content.4.Nf.B.3d

In Stuart's pantry, \(\displaystyle \frac{1}{5}\) of the items are chips and \(\displaystyle \frac{1}{5}\) of the items are cereal. What fraction of the items are chips or cereal?  

Possible Answers:

\(\displaystyle \frac{5}{5}\)

\(\displaystyle \frac{2}{5}\)

\(\displaystyle \frac{4}{5}\)

\(\displaystyle \frac{3}{5}\)

\(\displaystyle \frac{1}{5}\)

Correct answer:

\(\displaystyle \frac{2}{5}\)

Explanation:

To solve this problem, we are putting the chips and the cereal together, so we add the fractions. 

\(\displaystyle \frac{1}{5}+\frac{1}{5}=\frac{2}{5}\)

2 5

Example Question #2 : Adding Fractions In Word Problems

In Andy's pantry, \(\displaystyle \frac{3}{5}\) of the items are chips and \(\displaystyle \frac{1}{5}\) of the items are cereal. What fraction of the items are chips or cereal?  

 

Possible Answers:

\(\displaystyle \frac{5}{5}\)

\(\displaystyle \frac{1}{5}\)

\(\displaystyle \frac{2}{5}\)

\(\displaystyle \frac{4}{5}\)

\(\displaystyle \frac{3}{5}\)

Correct answer:

\(\displaystyle \frac{4}{5}\)

Explanation:

To solve this problem, we are putting the chips and the cereal together, so we add the fractions. 

\(\displaystyle \frac{3}{5}+\frac{1}{5}=\frac{4}{5}\)

4 5

Example Question #3 : Adding Fractions In Word Problems

In Sara's pantry, \(\displaystyle \frac{2}{10}\) of the items are chips and \(\displaystyle \frac{3}{10}\) of the items are cereal. What fraction of the items are chips or cereal?  

Possible Answers:

\(\displaystyle \frac{3}{10}\)

\(\displaystyle \frac{6}{10}\)

\(\displaystyle \frac{5}{10}\)

\(\displaystyle \frac{2}{10}\)

\(\displaystyle \frac{4}{10}\)

Correct answer:

\(\displaystyle \frac{5}{10}\)

Explanation:

To solve this problem, we are putting the chips and the cereal together, so we add the fractions. 

\(\displaystyle \frac{2}{10}+\frac{3}{10}=\frac{5}{10}\)

5 10

Learning Tools by Varsity Tutors