All Calculus 3 Resources
Example Questions
Example Question #1 : Normal Vectors
Which of the following is FALSE concerning a vector normal to a plane (in -dimensional space)?
The cross product of any two normal vectors to the plane is .
It is parallel to any other normal vector to the plane.
Multiplying it by a scalar gives another normal vector to the plane.
It is orthogonal to the plane.
All the other answers are true.
All the other answers are true.
These are all true facts about normal vectors to a plane. (If the surface is not a plane, then a few of these no longer hold.)
Example Question #5 : Normal Vectors
Determine whether the two vectors, and , are orthogonal or not.
The two vectors are orthogonal.
The two vectors are not orthogonal.
The two vectors are orthogonal.
Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:
To find the dot product of two vectors given the notation
Simply multiply terms across rows:
For our vectors, and
The two vectors are orthogonal.
Example Question #1 : Normal Vectors
Determine whether the two vectors, and , are orthogonal or not.
The two vectors are not orthogonal.
The two vectors are orthogonal.
The two vectors are not orthogonal.
Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:
To find the dot product of two vectors given the notation
Simply multiply terms across rows:
For our vectors, and
The two vectors are not orthogonal.
Example Question #6 : Normal Vectors
Determine whether the two vectors, and , are orthogonal or not.
The two vectors are not orthogonal.
The two vectors are orthogonal.
The two vectors are not orthogonal.
Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:
To find the dot product of two vectors given the notation
Simply multiply terms across rows:
For our vectors, and
The two vectors are not orthogonal.
Example Question #2501 : Calculus 3
Determine whether the two vectors, and , are orthogonal or not.
The two vectors are not orthogonal.
The two vectors are orthogonal.
The two vectors are orthogonal.
Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:
To find the dot product of two vectors given the notation
Simply multiply terms across rows:
For our vectors, and
The two vectors are orthogonal.
Example Question #501 : Vectors And Vector Operations
Determine whether the two vectors, and , are orthogonal or not.
The two vectors are not orthogonal.
The two vectors are orthogonal.
The two vectors are orthogonal.
Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:
To find the dot product of two vectors given the notation
Simply multiply terms across rows:
For our vectors, and
The two vectors are orthogonal.
Example Question #2501 : Calculus 3
Determine whether the two vectors, and , are orthogonal or not.
The two vectors are orthogonal.
The two vectors are not orthogonal.
The two vectors are not orthogonal.
Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:
To find the dot product of two vectors given the notation
Simply multiply terms across rows:
For our vectors, and
The two vectors are not orthogonal.
Example Question #2502 : Calculus 3
Determine whether the two vectors, and , are orthogonal or not.
The two vectors are not orthogonal.
The two vectors are orthogonal.
The two vectors are orthogonal.
Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:
To find the dot product of two vectors given the notation
Simply multiply terms across rows:
For our vectors, and
The two vectors are orthogonal.
Example Question #11 : Normal Vectors
Determine whether the two vectors, and , are orthogonal or not.
The two vectors are not orthogonal.
The two vectors are orthogonal.
The two vectors are orthogonal.
Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:
To find the dot product of two vectors given the notation
Simply multiply terms across rows:
For our vectors, and
The two vectors are orthogonal.
Example Question #12 : Normal Vectors
Determine whether the two vectors, and , are orthogonal or not.
The two vectors are not orthogonal.
The two vectors are orthogonal.
The two vectors are not orthogonal.
Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:
To find the dot product of two vectors given the notation
Simply multiply terms across rows:
For our vectors, and
The two vectors are not orthogonal.
Certified Tutor