Calculus 3 : Partial Derivatives

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #381 : Partial Derivatives

Find \displaystyle \frac{dz}{dt} if \displaystyle z=sin(xy)\displaystyle x=-t^5+4t and \displaystyle y=2t-3.

Possible Answers:

\displaystyle (-12t^5+15t^4+16t-12)cos(-2t^6+8t^2+3t^5-12t)

\displaystyle (-2t^5-5t^4+16t-42)cos(-t^6+8t^2+t^5-12t)

\displaystyle (-12t^5+13t^4+6t-1)sin(-2t^4+4t^2+3t^5-12t)

\displaystyle (4t^5+13t^4+3t+2)sin(-t^6+3t^2+9t^5-2t)

Correct answer:

\displaystyle (-12t^5+15t^4+16t-12)cos(-2t^6+8t^2+3t^5-12t)

Explanation:

Find \displaystyle \frac{dz}{dt} if \displaystyle z=sin(xy)\displaystyle x=-t^5+4t and \displaystyle y=2t-3.

Keep in mind, when taking the derivative with respect to \displaystyle x\displaystyle y is treated as a constant, and when taking the derivative with respect to \displaystyle y\displaystyle x is treated as a constant.

 

\displaystyle \frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}

\displaystyle \frac{dz}{dt}=(ycos(xy))(-5t^4+4)+(xcos(xy))(2) 

To put \displaystyle \frac{dz}{dt} solely in terms of \displaystyle x and  \displaystyle y, we substitute the definitions of \displaystyle x and \displaystyle y  given in the question,  \displaystyle x=-t^5+4t and \displaystyle y=2t-3.

\displaystyle \frac{dz}{dt}=\left [ (2t-3)cos\left [ (-t^5+4t)(2t-3) \right ] \right ](-5t^4+4) +\left [ (-t^5+4t)cos\left [ (-t^5+4t)(2t-3) \right ] \right ](2)

\displaystyle \frac{dz}{dt}=\left [ (2t-3)(-5t^4+4)cos\left [ (-2t^6+8t^2+3t^5-12t) \right ] \right ] +\left [ 2(-t^5+4t)cos\left [ (-2t^6+8t^2+3t^5-12t) \right ] \right ]

\displaystyle \frac{dz}{dt}=(-10t^5+8t+15t^4-12)cos(-2t^6+8t^2+3t^5-12t) +(-2t^5+8t)cos(-2t^6+8t^2+3t^5-12t)\displaystyle \frac{dz}{dt}=(-10t^5+8t+15t^4-12-2t^5+8t)cos(-2t^6+8t^2+3t^5-12t)

\displaystyle =(-12t^5+15t^4+16t-12)cos(-2t^6+8t^2+3t^5-12t)

Example Question #382 : Partial Derivatives

Find \displaystyle \frac{dz}{dt} if \displaystyle z=xln(y)\displaystyle x=sin(t) and \displaystyle y=cos(t).

 

Possible Answers:

\displaystyle ln[sin(t)]sin(t)-\frac{cos^2(t)}{sin(t)}

\displaystyle ln[cos(t)]cos(t)-\frac{sin^2(t)}{cos(t)}

\displaystyle ln[cos(t)]sin(t)-\frac{sin^2(t)}{cos(2t)}

\displaystyle ln[sin(t)]cos(t)-\frac{cos^2(t)}{sin(t)}

Correct answer:

\displaystyle ln[cos(t)]cos(t)-\frac{sin^2(t)}{cos(t)}

Explanation:

Find \displaystyle \frac{dz}{dt} if \displaystyle z=xln(y)\displaystyle x=sin(t) and \displaystyle y=cos(t).

Keep in mind, when taking the derivative with respect to \displaystyle x\displaystyle y is treated as a constant, and when taking the derivative with respect to \displaystyle y\displaystyle x is treated as a constant.

 

\displaystyle \frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}

\displaystyle \frac{dz}{dt}=(ln(y))(cos(t))+(x\frac{1}{y})(-sin(t)) 

\displaystyle \frac{dz}{dt}=ln(y)cos(t)-\frac{x}{y}sin(t)

To put \displaystyle \frac{dz}{dt} solely in terms of \displaystyle x and  \displaystyle y, we substitute the definitions of \displaystyle x and \displaystyle y  given in the question,  \displaystyle x=sin(t) and \displaystyle y=cos(t).

\displaystyle \frac{dz}{dt}=ln(cos(t))cos(t)-\frac{sin(t)}{cos(t)}sin(t)

\displaystyle \frac{dz}{dt}=ln[cos(t)]cos(t)-\frac{sin^2(t)}{cos(t)}

 

Example Question #381 : Partial Derivatives

Find \displaystyle \frac{dz}{dt} if \displaystyle z=x^2y-y^2x\displaystyle x=t^2-5t and \displaystyle y=3t+4.

Possible Answers:

\displaystyle 25t^4 -150t^3 +268t^2 +508t +83

\displaystyle 5t^4 +240t^3 -178t^2 -48t +80

\displaystyle 15t^4 -140t^3 +168t^2 +408t +80

\displaystyle 15t^4 -10t^3 +68t^2 +48t +8

Correct answer:

\displaystyle 15t^4 -140t^3 +168t^2 +408t +80

Explanation:

Find \displaystyle \frac{dz}{dt} if \displaystyle z=x^2y-y^2x\displaystyle x=t^2-5t and \displaystyle y=3t+4.

Keep in mind, when taking the derivative with respect to \displaystyle x\displaystyle y is treated as a constant, and when taking the derivative with respect to \displaystyle y\displaystyle x is treated as a constant.

 

\displaystyle \frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}

\displaystyle \frac{dz}{dt}=(2xy-y^2)(2t-5)+(x^2-2yx)(3)

\displaystyle \frac{dz}{dt}=(2xy-y^2)(2t-5)+3(x^2-2xy)

 

To put \displaystyle \frac{dz}{dt} solely in terms of \displaystyle x and  \displaystyle y, we substitute the definitions of \displaystyle x and \displaystyle y  given in the question,  \displaystyle x=t^2-5t and \displaystyle y=3t+4.

\displaystyle \frac{dz}{dt}=(2(t^2-5t)(3t+4)-(3t+4)^2)(2t-5)+3((t^2-5t)^2-2(t^2-5t)(3t+4))

\displaystyle \frac{dz}{dt}=[2(3t^3-15t^2+4t^2-20t)-(9t^2+24t+16)](2t-5) +3[(t^4-10t^3+25t^2)-2(3t^3-15t^2+4t^2-20t)]

\displaystyle \frac{dz}{dt}=[6t^3-30t^2+8t^2-40t-9t^2-24t-16](2t-5) +3[t^4-10t^3+25t^2-6t^3+30t^2-8t^2+40t]

\displaystyle \frac{dz}{dt}=[6t^3-31t^2-64t-16](2t-5) +3[t^4-16t^3+47t^2+40t]

\displaystyle \frac{dz}{dt}=12t^4-62t^3-128t^2-32t -30t^3+155t^2+320t+80 +3t^4-48t^3+141t^2+120t

 

\displaystyle \frac{dz}{dt}=15t^4 -140t^3 +168t^2 +408t +80

Example Question #384 : Partial Derivatives

Find \displaystyle \frac{dz}{dt} if \displaystyle z=e^{5xy}\displaystyle x=\sqrt{t} and \displaystyle y=t^2.

 

Possible Answers:

\displaystyle \frac{27}{4}t^{5/2}e^{5t^{3/2}}

\displaystyle \frac{25}{2}t^{3/2}e^{5t^{5/2}}

\displaystyle \frac{25}{4}t^{3/4}e^{5t^{5/4}}

\displaystyle \frac{35}{9}t^{3}e^{5t^{5}}

Correct answer:

\displaystyle \frac{25}{2}t^{3/2}e^{5t^{5/2}}

Explanation:

Find \displaystyle \frac{dz}{dt} if \displaystyle z=e^{5xy}\displaystyle x=\sqrt{t} and \displaystyle y=t^2.

Keep in mind, when taking the derivative with respect to \displaystyle x\displaystyle y is treated as a constant, and when taking the derivative with respect to \displaystyle y\displaystyle x is treated as a constant.

 

\displaystyle \frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}

\displaystyle \frac{dz}{dt}=(e^{5xy}*5y)(1/2t^{-1/2})+(e^{5xy}*5x)(2t)

 

To put \displaystyle \frac{dz}{dt} solely in terms of \displaystyle x and  \displaystyle y, we substitute the definitions of \displaystyle x and \displaystyle y  given in the question,  \displaystyle x=\sqrt{t} and \displaystyle y=t^2.

 

\displaystyle \frac{dz}{dt}=(e^{5t^{1/2}(t^2)}*5t^2)(1/2t^{-1/2})+(e^{5t^{1/2}(t^2)}*5t^{1/2})(2t)

\displaystyle \frac{dz}{dt}=(e^{5t^{5/2}}*5t^2)(1/2t^{-1/2})+(e^{5t^{5/2}}*5t^{1/2})(2t)

\displaystyle \frac{dz}{dt}=(e^{5t^{5/2}}*5/2t^{3/2})+(e^{5t^{5/2}}*10t^{3/2})

\displaystyle \frac{dz}{dt}=e^{5t^{5/2}}(5/2t^{3/2}+10t^{3/2})

\displaystyle \frac{dz}{dt}=\frac{25}{2}t^{3/2}e^{5t^{5/2}}

Example Question #31 : Multi Variable Chain Rule

Find \displaystyle \frac{dz}{dt} if \displaystyle z=x^2+7xy^2\displaystyle x=1/t and \displaystyle y=5t^2-t.

 

Possible Answers:

\displaystyle 55t^2-10t+8-2t^3

\displaystyle 525t^2-140t+7-2/t^3

\displaystyle -52t^5-40t^4+7t^3-2t^2

\displaystyle 425t^2-240t-7+1/t^3

Correct answer:

\displaystyle 525t^2-140t+7-2/t^3

Explanation:

Find \displaystyle \frac{dz}{dt} if \displaystyle z=x^2+7xy^2\displaystyle x=1/t and \displaystyle y=5t^2-t.

Keep in mind, when taking the derivative with respect to \displaystyle x\displaystyle y is treated as a constant, and when taking the derivative with respect to \displaystyle y\displaystyle x is treated as a constant.

 

\displaystyle \frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}

\displaystyle \frac{dz}{dt}=(2x+7y^2)(-1/t^2)+(14xy)(10t-1)

 

To put \displaystyle \frac{dz}{dt} solely in terms of \displaystyle x and  \displaystyle y, we substitute the definitions of \displaystyle x and \displaystyle y  given in the question,  \displaystyle x=1/t and \displaystyle y=5t^2-t.

\displaystyle \frac{dz}{dt}=[2(1/t)+7(5t^2-t)^2](-1/t^2)+[14(1/t)(5t^2-t)](10t-1)

\displaystyle \frac{dz}{dt}=[2/t+7(25t^4-10t^3+t^2)](-1/t^2)+[(14/t)(5t^2-t)](10t-1)

\displaystyle \frac{dz}{dt}=[2/t+175t^4-70t^3+7t^2](-1/t^2)+(70t-14)(10t-1)

\displaystyle \frac{dz}{dt}=-2/t^3-175t^2+70t-7+700t^2-140t-70t+14

\displaystyle \frac{dz}{dt}= -175t^2+700t^2 +70t-140t-70t +14-7-2/t^3

\displaystyle \frac{dz}{dt}= 525t^2-140t+7-2/t^3

Example Question #32 : Multi Variable Chain Rule

Find \displaystyle \frac{dz}{dt} if \displaystyle z=sin(x)cos(y)\displaystyle x=t^4 and \displaystyle y=7-t.

 

Possible Answers:

\displaystyle 4t^3cos(t^4)cos(7-t)+sin(t^4)sin(7-t)

\displaystyle -t^2cos(5t^4)sin(7-t)+sin(t^5)sin(7-t)

\displaystyle -t^3cos(5t^5)cos(7-t)+sin(t^5)sin(7-t)

\displaystyle 14t^3cos(2t^5)sin(7-t)+cos(t^3)sin(7-t)

Correct answer:

\displaystyle 4t^3cos(t^4)cos(7-t)+sin(t^4)sin(7-t)

Explanation:

Find \displaystyle \frac{dz}{dt} if \displaystyle z=sin(x)cos(y)\displaystyle x=t^4 and \displaystyle y=7-t.

 

Keep in mind, when taking the derivative with respect to \displaystyle x\displaystyle y is treated as a constant, and when taking the derivative with respect to \displaystyle y\displaystyle x is treated as a constant.

 

\displaystyle \frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}

\displaystyle \frac{dz}{dt}=[cos(y)cos(x)](4t^3)+[sin(x)(-sin(y))](-1)

\displaystyle \frac{dz}{dt}=4t^3cos(x)cos(y)+sin(x)sin(y) 

To put \displaystyle \frac{dz}{dt} solely in terms of \displaystyle x and  \displaystyle y, we substitute the definitions of \displaystyle x and \displaystyle y  given in the question,  \displaystyle x=t^4 and \displaystyle y=7-t.

\displaystyle \frac{dz}{dt}=4t^3cos(t^4)cos(7-t)+sin(t^4)sin(7-t)

 

Example Question #33 : Multi Variable Chain Rule

Compute \displaystyle \frac{df}{dt} for the function \displaystyle f(x,y,z)=3xe^{z+y} where the variables \displaystyle x, y, and \displaystyle z are functions of the of the parameter \displaystyle t:

 

\displaystyle x = t\: \: \:\: \: \: \:y=\ln(t)\: \: \: \: \: \: \: \:z=t^2

Possible Answers:

\displaystyle t(e^{t^2}-1)

\displaystyle 4t^2e^{t^2}+1

\displaystyle 6te^{t^2}(1+t^2)

\displaystyle 12t^2e^{t^2}(1+2t)

\displaystyle e^{t^2}(1-t)

Correct answer:

\displaystyle 6te^{t^2}(1+t^2)

Explanation:

Compute \displaystyle \frac{df}{dt} for the function \displaystyle f(x,y,z)=3xe^{z+y} where the variables \displaystyle x, y, and \displaystyle z are functions of the of the parameter \displaystyle t:

\displaystyle x = t\: \: \:\: \: \: \:y=\ln(t)\: \: \: \: \: \: \: \:z=t^2

Because each function is given in terms of the parameter \displaystyle t we can conveniently write the function as a function of \displaystyle t alone: 

\displaystyle f(x(t), y(t), z(t))=f(t)

 

Solution 1

For the function described in this problem, the function can be written strictly in terms of the parameter \displaystyle t by simply substituting the definitions given for \displaystyle x\displaystyle y, or \displaystyle z

\displaystyle f(x,y,z)=f(t, \: \ln t,\: \:t^2 ) )=3te^{t^2+\ln t}=3t^2e^{t^2}

 \displaystyle f(t)=3t^2e^{t^2}                                                         

So now we have the function written in the form of a single variable function of \displaystyle t. We can use the usual chain-rule. 

 

Apply the product rule and and the chain-rule:  

\displaystyle \frac{df}{dt}=3t^2\left(\frac{d}{dt}e^{t^2} \right )+e^{t^2}\left(\frac{d}{dt}3t^2 \right )=6te^{t^2}+3t^2e^{t^2}(2t)                                              

 \displaystyle =6te^{t^2}+6t^3e^{t^2}                                                        

 \displaystyle =6te^{t^2}(1+t^2)

 

Solution 2

The derivative of \displaystyle f with respect to \displaystyle t will be the sum of the derivatives of each variable \displaystyle x\displaystyle y, and \displaystyle z with respect to \displaystyle t.

 

\displaystyle \frac{df}{dt}=\frac{\partial f}{\partial x}\frac{dx}{dt}+\frac{\partial f}{\partial y}\frac{dy}{dt}+\frac{\partial f}{\partial z}\frac{dz}{dt}                                (1) 

 

In Equation (1) we use the partial derivative notation for a derivative of \displaystyle f with respect to the variables \displaystyle x\displaystyle y, and \displaystyle z since it is a multi-variable function, we have to specify which variable we are differentiating unless we are differentiating with respect to \displaystyle t.

 

We return to the standard derivative notation when computing the derivatives with respect to \displaystyle t since each function \displaystyle f\displaystyle x\displaystyle y, and \displaystyle z can be written as a single variable function of \displaystyle t. Now simply apply (3) to the function term-by-term: 

 

 

\displaystyle \frac{\partial f}{\partial x}\frac{dx}{dt}=3e^{z+y}

 

\displaystyle \frac{\partial f}{\partial y}\frac{dy}{dt}=3xe^{z+y}\frac{1}{t}

 

\displaystyle \frac{\partial f}{\partial z}\frac{dz}{dt}=3xe^{z+y}(2t)=6xte^{z+y}

 

Now ad the terms to get an expression for \displaystyle \frac{df}{dt} and then rewrite in terms of \displaystyle t.

 \displaystyle \frac{df}{dt}=3xe^{z+y}\frac{1}{t}+6xte^{z+y}+3e^{z+y}

\displaystyle =3e^{z+y}(1+\frac{x}{t}+2xt)

  \displaystyle =3e^{t^2+\ln t}\left(1+\frac{t}{t}+2t^2\right)

 \displaystyle =6e^{t^2+\ln t}\left(1+t^2\right)

\displaystyle =6te^{t^2}\left(1+t^2\right)

 

Therefore: 

\displaystyle \frac{df}{dt}=6te^{t^2}\left(1+t^2\right)

 

 

 

Example Question #34 : Multi Variable Chain Rule

Find the two variable function \displaystyle f(x,y) that satisfies the following:   

 

 \displaystyle \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x} \right )=2

\displaystyle \frac{\partial f}{\partial x}(0,1)=1 

\displaystyle f(1,0)=2

 

 

 

 

Possible Answers:

\displaystyle f(x,y)=2x-3y(4-x)

\displaystyle f(x,y)=y-2x+4

\displaystyle f(x,y)=(2y-1)x+3

\displaystyle f(x,y)=(2x-1)y-1

\displaystyle f(x,y)=2xy-3(4-x)

Correct answer:

\displaystyle f(x,y)=(2y-1)x+3

Explanation:

 \displaystyle \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x} \right )=2

\displaystyle \frac{\partial f}{\partial x}(0,1)=1 

\displaystyle f(1,0)=2

 

The first step is to integrate the function with respect to \displaystyle y since that is the outer most derivative in this problem. 

 

\displaystyle \frac{\partial f}{\partial x}= \int \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x} \right )dy=\int 2dy=2y+C_1

 

\displaystyle f(x,y)=\int \frac{\partial f}{\partial x}dx=\int (2y+C_1)dx=(2y+C_1)x+C_2

 

 

Now apply the constraints to compute the two constants of integration. 

 \displaystyle \frac{\partial f}{\partial x}(0,1)=2+C_1 = 1 \: \: \: \: \: \: \:\Rightarrow \: \: \: \: \: \: \:C_1=-1

So far we have: 

\displaystyle f(x,y)=(2y-1)x+C_2

Now apply the second constraint given: 

\displaystyle f(1,0)=2\: \: \: \: \: \:\ \Rightarrow \: \: \: \: \: -1+C_2 =2\: \: \: \: \: \Rightarrow \: \: \: \:C_2 =3

 

 

\displaystyle f(x,y)=(2y-1)x+3

 

Example Question #2751 : Calculus 3

Find \displaystyle \frac{\partial f}{dz}.

\displaystyle f(x,y,z)=xyz^{10}+\frac{xy}{\ln(yz)}+10e^z+e^{xy}

Possible Answers:

\displaystyle \frac{\partial f}{dz}=10xyz^9

\displaystyle \frac{\partial f}{dz}=10e^z

\displaystyle \frac{\partial f}{dz}=\frac{xy}{z\ln^2(yz)}

\displaystyle \frac{\partial f}{dz}=10xyz^9-\frac{xy}{z\ln^2(yz)}+10e^z

\displaystyle \frac{\partial f}{dz}=10xyz^9+10e^z

Correct answer:

\displaystyle \frac{\partial f}{dz}=10xyz^9-\frac{xy}{z\ln^2(yz)}+10e^z

Explanation:

In order to find \displaystyle \frac{\partial f}{dz}, we need to take the derivative of \displaystyle f in respect to \displaystyle z, and treat \displaystyle x, and \displaystyle y as constants. We also need to remember what the derivatives of natural log, exponential functions and power functions are for single variables.

Natural Log:

\displaystyle f(x)=\ln(g(x))

\displaystyle f'(x)=\frac{g'(x)}{g(x)}

Exponential Functions:

\displaystyle f(x)=e^{g(x)}

\displaystyle f'(x)=g'(x)e^{g(x)}

Power Functions:

\displaystyle f(x)=x^n

\displaystyle f'(x)=nx^{n-1}

 

\displaystyle \frac{\partial f}{dz}=10xyz^9-xy(\ln(yz))^{-2}(\frac{y}{yz})+10e^z+0

\displaystyle \frac{\partial f}{dz}=10xyz^9-\frac{xy}{z\ln^2(yz)}+10e^z

Example Question #2751 : Calculus 3

Find \displaystyle \frac{\partial f}{dy}.

\displaystyle f(x,y,z)=xyz^{10}+\frac{xy}{\ln(yz)}+10e^z+e^{xy}

Possible Answers:

\displaystyle \frac{\partial f}{dy}=\frac{x}{\ln(yz)}

\displaystyle \frac{\partial f}{dy}=xz^{10}

\displaystyle \frac{\partial f}{dy}=x+\frac{z}{\ln(yz)}-\frac{y}{\ln^2{(yz)}}+ye^{xy}

\displaystyle \frac{\partial f}{dy}=z^{10}+\frac{1}{\ln(yz)}-\frac{y}{\ln^2{(yz)}}+e^{xy}

\displaystyle \frac{\partial f}{dy}=xz^{10}+\frac{x}{\ln(yz)}-\frac{x}{\ln^2{(yz)}}+xe^{xy}

Correct answer:

\displaystyle \frac{\partial f}{dy}=xz^{10}+\frac{x}{\ln(yz)}-\frac{x}{\ln^2{(yz)}}+xe^{xy}

Explanation:

In order to find \displaystyle \frac{\partial f}{dy}, we need to take the derivative of \displaystyle f in respect to  \displaystyle y, and treat \displaystyle x, and \displaystyle z as constants. We also need to remember what the derivatives of natural log, exponential functions and power functions are for single variables.

Natural Log:

\displaystyle f(x)=\ln(g(x))

\displaystyle f'(x)=\frac{g'(x)}{g(x)}

Exponential Functions:

\displaystyle f(x)=e^{g(x)}

\displaystyle f'(x)=g'(x)e^{g(x)}

Power Functions:

\displaystyle f(x)=x^n

\displaystyle f'(x)=nx^{n-1}

 

\displaystyle \frac{\partial f}{dy}=xz^{10}+x(\ln(yz))^{-1}-xy(\ln(yz))^{-2}\cdot\frac{z}{yz}+0+xe^{xy}

 

\displaystyle \frac{\partial f}{dy}=xz^{10}+\frac{x}{\ln(yz)}-\frac{x}{\ln^2{(yz)}}+xe^{xy}

Learning Tools by Varsity Tutors