Calculus 3 : Partial Derivatives

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3801 : Calculus 3

Find the differential of the following function:

\displaystyle f(x,y,z)=\cos^2(xy)+\sin(z)

Possible Answers:

\displaystyle -y\cos(xy)\sin(xy)dx-x\cos(xy)\sin(xy)dy+\cos(z)dz

\displaystyle -2y\cos(xy)\sin(xy)dx-2x\cos(xy)\sin(xy)dy+\cos(z)dz

\displaystyle -2y\cos(xy)\sin(xy)dx-2x\cos(xy)\sin(xy)dy-\cos(z)dz

\displaystyle -2x\cos(xy)\sin(xy)dx-2y\cos(xy)\sin(xy)dy+\cos(z)dz

\displaystyle 2y\cos(xy)\sin(xy)dx+2x\cos(xy)\sin(xy)dy+\cos(z)dz

Correct answer:

\displaystyle -2y\cos(xy)\sin(xy)dx-2x\cos(xy)\sin(xy)dy+\cos(z)dz

Explanation:

The differential of a function \displaystyle f(x,y,z) is given by

\displaystyle f_xdx+f_ydy+f_zdz

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=-2y\cos(xy)\sin(xy)

\displaystyle f_y=-2x\cos(xy)\sin(xy)

\displaystyle f_z=\cos(z)

Example Question #21 : Differentials

Find the differential of the following function:

\displaystyle f(x,y,z)=7xy+6x^2y^3e^{z^2}

Possible Answers:

\displaystyle (7y+12xy^2e^{z^2})dx+(7x+12x^2y^2e^{z^2})dy+(12x^2y^3ze^{z^2})dz

\displaystyle (7x+12xy^2e^{z^2})dx+(7y+18x^2y^2e^{z^2})dy+(12x^2y^3ze^{z^2})dz

\displaystyle (7y+12xy^2e^{z^2})dx+(7x+18x^2y^2e^{z^2})dy+(12x^2y^3ze^{z^2})dz

\displaystyle (7y+12xy^2e^{z^2})dx+(7x+18x^2y^2e^{z^2})dy+(6x^2y^3ze^{z^2})dz

\displaystyle (7y+12xy^2e^{z^2})dx+(7x+18x^2y^2e^{z^2})dy+(12x^2y^3z^2e^{z^2})dz

Correct answer:

\displaystyle (7y+12xy^2e^{z^2})dx+(7x+18x^2y^2e^{z^2})dy+(12x^2y^3ze^{z^2})dz

Explanation:

The differential of a function \displaystyle f(x,y,z) is given by

\displaystyle f_xdx+f_ydy+f_zdz

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=7y+12xy^2e^{z^2}

\displaystyle f_y=7x+18x^2y^2e^{z^2}

\displaystyle f_z=12x^2y^3ze^{z^2}

Example Question #1441 : Partial Derivatives

Find the total differential of the following function:

\displaystyle f(x,y,z)=xz^4+y\sqrt{z}

Possible Answers:

\displaystyle z^4dx+\sqrt{z}dy+(4z^3+\frac{y}{2\sqrt{z}})dz

\displaystyle z^4dx+\sqrt{z}dy+(4xz^3+\frac{y\sqrt{z}}{2})dz

\displaystyle z^4dx+\sqrt{z}dy+(4xz^3+\frac{y}{2\sqrt{z}})dz

\displaystyle z^4+\sqrt{z}+4xz^3+\frac{y}{2\sqrt{z}}

Correct answer:

\displaystyle z^4dx+\sqrt{z}dy+(4xz^3+\frac{y}{2\sqrt{z}})dz

Explanation:

The total differential of a function \displaystyle f(x,y,z) is given by

\displaystyle f_xdx+f_ydy+f_zdz

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=z^4\displaystyle f_y=\sqrt{z}\displaystyle f_z=4xz^3+\frac{y}{2\sqrt{z}}

Example Question #1442 : Partial Derivatives

Find the total differential of the function:

\displaystyle f(x, y, z)=8z\ln(xy)

Possible Answers:

\displaystyle \frac{8z}{y}dx+\frac{8z}{x}dy+8\ln(xy)dz

\displaystyle \frac{8z}{x}+\frac{8z}{y}+8\ln(xy)

\displaystyle \frac{8yz}{x}dx+\frac{8xz}{y}dy+8\ln(xy)dz

\displaystyle \frac{8z}{x}dx+\frac{8z}{y}dy+8\ln(xy)dz

Correct answer:

\displaystyle \frac{8z}{x}dx+\frac{8z}{y}dy+8\ln(xy)dz

Explanation:

The total differential of a function \displaystyle f(x,y,z) is given by

\displaystyle f_xdx+f_ydy+f_zdz

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=\frac{8z}{x}\displaystyle f_y=\frac{8z}{y}\displaystyle f_z=8\ln(xy)

Example Question #21 : Differentials

If \displaystyle z=f(x,y)=x^6+3xy-\sin(xy), calculate the total differential \displaystyle dz.

Possible Answers:

\displaystyle dz=(6x^5+3y-\cos(xy))dx+(3x-\cos(xy))dy

\displaystyle dz=(6x^5+3y-y\cos(xy))dx+(3x-x\cos(xy))dy

\displaystyle dz=(6x^5+3y+y\cos(xy))dx+(3x+x\cos(xy))dy

\displaystyle dz=(\frac{x^7}{7}+3y-y\cos(xy))dx+(\frac{3x^2}{2}-x\cos(xy))dy

\displaystyle dz=(6x^5-3y+y\cos(xy))dx+(3+x\cos(xy))dy

Correct answer:

\displaystyle dz=(6x^5+3y-y\cos(xy))dx+(3x-x\cos(xy))dy

Explanation:

The total differential \displaystyle dz of a function \displaystyle z=f(x,y) is defined as the sum of the partial derivatives of \displaystyle z with respect to each of its variables; that is,

\displaystyle dz=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy

In this case, \displaystyle z=f(x,y)=x^6+3xy-\sin(xy), and so we use the sum rule, the rule for derivatives of a variable raised to a power, the rule for the derivative of \displaystyle \sin(x), and the chain rule to calculate the partial derivatives \displaystyle \frac{\partial f}{\partial x} and \displaystyle \frac{\partial f}{\partial y}, as shown:

\displaystyle \frac{\partial f}{\partial x}=6x^5+3y-y\cos(xy),

\displaystyle \frac{\partial f}{\partial y}=3x-x\cos(xy).

In both cases, we treated the variable not being differentiated as a constant, and applied the chain rule to \displaystyle \sin(xy) to calculate its partial derivatives. Now that \displaystyle \frac{\partial f}{\partial x}dx and \displaystyle \frac{\partial f}{\partial y}dy have been calculated, all that remains is to substitute them into the definition of the total derivative:

\displaystyle dz=(6x^5+3y-y\cos(xy))dx+(3x-x\cos(xy))dy

Example Question #27 : Differentials

If , calculate the total differential \displaystyle dz.

Possible Answers:

Correct answer:

Explanation:

The total differential \displaystyle dz of a function \displaystyle z=f(x,y) is defined as the sum of the partial derivatives of \displaystyle z with respect to each of its variables; that is,

\displaystyle dz=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy

In this case, , and so we use the product rule and the rule for differentiating \displaystyle e^x to calculate the partial derivatives \displaystyle \frac{\partial f}{\partial x} and \displaystyle \frac{\partial f}{\partial y}, as shown:

,

In both cases, we treated the variable not being differentiated as a constant, and applied the product rule to calculate its partial derivatives. Now that \displaystyle \frac{\partial f}{\partial x}dx and \displaystyle \frac{\partial f}{\partial y}dy have been calculated, all that remains is to substitute them into the definition of the total derivative:

Example Question #22 : Differentials

Compute the differentials for the following function.

\displaystyle z=e^{x^2+4y^2}\sin(y)

Possible Answers:

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)dx+(8y\sin(y)e^{x^2+4y^2}+cos(y)e^{x^2+4y^2}) dy

\displaystyle dz=8y\cos(y)e^{x^2+4y^2} dy

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)+8y\cos(y)e^{x^2+4y^2}

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)dx

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)

Correct answer:

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)dx+(8y\sin(y)e^{x^2+4y^2}+cos(y)e^{x^2+4y^2}) dy

Explanation:

What we need to do is take derivatives, and remember the general equation.

\displaystyle z=e^{x^2+4y^2}\sin(y)

\displaystyle w=g(x,y,z)

\displaystyle dw=g_xdx+g_ydy+g_zdz

When taking the derivative with respect to y recall that the product rule needs to be used.

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)dx+(8y\sin(y)e^{x^2+4y^2}+cos(y)e^{x^2+4y^2}) dy

Example Question #23 : Differentials

Compute the differentials for the following function.

\displaystyle z=e^{x^2+4y^2}\sin(y)

Possible Answers:

\displaystyle dz=8y\cos(y)e^{x^2+4y^2} dy

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)dx+(8y\sin(y)e^{x^2+4y^2}+cos(y)e^{x^2+4y^2}) dy

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)+8y\cos(y)e^{x^2+4y^2}

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)dx

Correct answer:

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)dx+(8y\sin(y)e^{x^2+4y^2}+cos(y)e^{x^2+4y^2}) dy

Explanation:

What we need to do is take derivatives, and remember the general equation.

\displaystyle z=e^{x^2+4y^2}\sin(y)

\displaystyle w=g(x,y,z)

\displaystyle dw=g_xdx+g_ydy+g_zdz

When taking the derivative with respect to y recall that the product rule needs to be used.

\displaystyle dz=2xe^{x^2+4y^2}\sin(y)dx+(8y\sin(y)e^{x^2+4y^2}+cos(y)e^{x^2+4y^2}) dy

Learning Tools by Varsity Tutors