Calculus 3 : Line Integrals

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Line Integrals

Write the parametric equations of the line that passes through the points \displaystyle \left ( 0,1,3\right ) and \displaystyle \left ( 2,5,8\right ).

Possible Answers:

\displaystyle x=5t+3,y=3t=1,z=-5t+1

\displaystyle x=2t+4,y+3t+1,z=t

\displaystyle x=-2t,y=4t+1,z=5t+3

\displaystyle x=-2t,y=-4t+1,z=-5t+3

Correct answer:

\displaystyle x=-2t,y=-4t+1,z=-5t+3

Explanation:

First, you must find the vector that is parallel to the line.

This vector is 

\displaystyle v=\left \langle x_1-x_2,y_1-y_2,z_1-z_2\right \rangle.

From the points we were given, this becomes 

\displaystyle \left \langle -2,-4,-5\right \rangle.

To form the parametric equations, we need to pick a point that lies on the line we want.

The point \displaystyle \left ( 0,1,3\right ) is used.

The vector form of the line is from the following equation 

\displaystyle r=\left ( x_1,y_1,z_1\right )+t\left \langle v\right \rangle=\left ( 0,1,3\right )+t\left \langle -2,-4,-5\right \rangle.

We then rewrite each expression in terms of the variables x, y, and z. 

Example Question #2 : Line Integrals

Evaluate the line integral \displaystyle \int_C f(x,y)dsof the function 

\displaystyle f(x,y)=y+cos(x) over the line segment \displaystyle C from \displaystyle (0,0) to \displaystyle (4,5)

 

Possible Answers:

\displaystyle \frac{11\sqrt{21}}{3}

\displaystyle \frac{9\sqrt{21}}{7}

\displaystyle \frac{\sqrt{31}}{3}

\displaystyle \frac{5\sqrt{41}}{2}

\displaystyle \frac{11\sqrt{41}}{4}

Correct answer:

\displaystyle \frac{5\sqrt{41}}{2}

Explanation:

Evaluate the line integral \displaystyle \int_C f(x,y)dsusing the function 

\displaystyle f(x,y)=y+\cos(\pi x) over the line segment \displaystyle C from \displaystyle (0,0) to \displaystyle (4,5)

 

Define the Parametric Equations to Represent \displaystyle C

The points given lie on the line \displaystyle y = \frac{5}{4}x. Define the parameter \displaystyle x = t, then \displaystyle y can be written \displaystyle y =\frac{5}{4}t. Therefore, the parametric equations for \displaystyle C are: 

 

\displaystyle x(t)=t

\displaystyle y(t)=\frac{5}{4}t

_________________________________________________________________

 The line integral of a function \displaystyle f(x,y) along the curve \displaystyle C with the parametric equation \displaystyle x(t) and \displaystyle y(t) with \displaystyle a\leq t\leq b is defined by: 

 

\displaystyle \int_C f(x,y)ds = \int_a^bf(x(t),y(t))\left \| \vec{r'}(t)\right \|dt                                  (1)

 

Where \displaystyle \vec{r'(t)} is the vector derivative of the vector \displaystyle \vec{r}(t)=\left< x(t),y(t)\right>, therefore \displaystyle \left \| \vec{r'(t)}\right \| is simply the magnitude of the vector derivative. 

______________________________________________________________

Write the vector \displaystyle \vec{r(t)}:

\displaystyle \vec{r(t)}=\left< t, \frac{5}{4}t\right>

 

Differentiate, 

\displaystyle \vec{r'(t)}=\left< 1,\frac{5}{4}\right>

 

The absolute value (magnitude) of this vector is: 

\displaystyle \left \| \vec{r'}(t)\right \|=\left \| \left< 1,\frac{5}{4 }\right>\right \|=\sqrt{1^2 +\left(\frac{5}{4} \right )^2}=\frac{\sqrt{41}}{4}

 

Write the function \displaystyle f(x,y) in terms of the parameter \displaystyle t

\displaystyle f(x(t),y(t))=f\left(t,\frac{5}{4}t\right) =\frac{5}{4}t+\cos(\pi t)

Insert everything into Equation (1) noting that the limits of integration will be \displaystyle 0\leq t \leq 4 due to the fact that the parameter \displaystyle x(t)=t varies from \displaystyle 0 to \displaystyle 4 over the line segment we are integrating over. 

 

\displaystyle \int_C(y+\cos(\pi x))ds=\int_0^4\left(\frac{5}{4}t+\cos(\pi t)\right)\frac{\sqrt{41}}{4}dt

 

\displaystyle =\frac{\sqrt{41}}{4}\left[\frac{5}{8}t^2+\frac{1}{\pi}\sin(\pi t) \right ]_{t=0}^{t=4}

 

\displaystyle =\frac{\sqrt{41}}{4}\left[\frac{5}{8}(16)+\frac{1}{\pi }\sin(4 \pi) -0-\frac{1}{\pi}\sin(0)\right ]

 

\displaystyle =\frac{5\sqrt{41}}{2}

 

 

 

 

 

 

 

 

 

 

 

 

Example Question #1 : Line Integrals

Evaluate \displaystyle \int_{C} \nabla f \cdot d\vec{r}, where \displaystyle f(x,y,z)=\cos(2\pi x)+\sin(3\pi y)+xyz, and \displaystyle C is any path that starts at \displaystyle (1,1,-2), and ends at \displaystyle (3,4,5).

Possible Answers:

\displaystyle -61

\displaystyle 0

\displaystyle 62

\displaystyle 61

\displaystyle -62

Correct answer:

\displaystyle -62

Explanation:

Since there isn't a specific path we need to take, we just evaluate \displaystyle f(x,y,z) at the end points.

\displaystyle \int_{C} \nabla f \cdot d\vec{r}=f(1,1,-2)-f(3,4,5)

 

\displaystyle =\cos(2\pi (1))+\sin(3\pi (1))+(1)(1)(-2)-(\cos(2\pi (3))+\sin(4\pi (4))+(3)(4)(5))

\displaystyle =\cos(2\pi)+\sin(3\pi)-2-(\cos(6\pi)+\sin(12\pi)+60)

\displaystyle =1+0-2-(1+0+60)=-62

Example Question #1 : Line Integrals

Use Green's Theorem to evaluate \displaystyle \oint_C 5xy \ dx +x^3y^2 \ dy, where \displaystyle C is a triangle with vertices \displaystyle (0,0)\displaystyle (1,0)\displaystyle (1,2) with positive orientation.

Possible Answers:

\displaystyle -1

\displaystyle 0

\displaystyle 2

\displaystyle 1

\displaystyle -2

Correct answer:

\displaystyle -2

Explanation:

First we need to make sure that the conditions for Green's Theorem are met. 

The conditions are met because it is positively oriented, piecewise smooth, simple, and closed under the region (see below).  

\displaystyle 0\leq x \leq 1

\displaystyle 0 \leq y \leq 2x

In this particular case \displaystyle P=5xy, and \displaystyle Q=x^3y^2, where \displaystyle P, and \displaystyle Q refer to \displaystyle \oint_C P \ dx +Q \ dy.

We know from Green's Theorem that

\displaystyle \oint_C P \ dx +Q \ dy=\int \int_D \Big(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\Big) dA

 

So lets find the partial derivatives.

\displaystyle \frac{\partial Q}{\partial x}=3x^2y^2

\displaystyle \frac{\partial P}{\partial y}=5x

\displaystyle \oint_C 5xy \ dx +x^3y^2 \ dy=\int \int_D 3x^2y^2-5x \ dA

\displaystyle =\int_{0}^{1} \int_{0}^{2x} 3x^2y^2-5x \ dy\ dx

 

\displaystyle =\int_{0}^{1} \Big(\frac{1}{3}\cdot3x^2y^3-5xy\Big)\Big|_{0}^{2x}\ dx

\displaystyle =\int_{0}^{1} \Big(x^2(2x)^3-5x(2x)\Big)\ dx

\displaystyle =\int_{0}^{1} 8x^5-10x^2\ dx

\displaystyle = \frac{4}{3}x^6-\frac{10}{3}x^3\Big|_{0}^{1}

\displaystyle = \frac{4}{3}(1)^6-\frac{10}{3}(1)^3-0=\frac{4}{3}-\frac{10}{3}=-\frac{6}{3}=-2

 

 

Example Question #2 : Green's Theorem

Use Green's Theorem to evaluate the line integral

\displaystyle \int_{c}3ydx-4xdy

over the region R, described by connecting the points \displaystyle (0,0),(2,0),(2,4), orientated clockwise.

Possible Answers:

\displaystyle 28

\displaystyle 0

\displaystyle 14

\displaystyle 56

Correct answer:

\displaystyle 28

Explanation:

Using Green's theorem

\displaystyle \int_C{F}dr=\int \int\left[{\frac{\partial{Q}}{\partial{x}}-\frac{\partial{P}}{\partial{y}}}\right]dA

\displaystyle \frac{\partial{Q}}{\partial{x}}-\frac{\partial{P}}{\partial{y}}=-4-3=-7

\displaystyle Area=\frac{1}{2}bh=\frac{1}{2}\times2\times4=4

since the region is oriented clockwise, we would have

\displaystyle \int_C{F}dr=-\int\int\left[\frac{\partial{Q}}{\partial{x}}-\frac{\partial{P}}{\partial{y}}\right]dA

which gives us

\displaystyle \int_C{F} dr=-(-7)\times4=28

Example Question #3 : Green's Theorem

Use Greens Theorem to evaluate the line integral

\displaystyle \int_C 5y dx - 4x dy

over the region connecting the points \displaystyle (0,0),(2,0),(2,4) oriented clockwise

Possible Answers:

\displaystyle 18

\displaystyle 36

\displaystyle 72

\displaystyle 54

Correct answer:

\displaystyle 36

Explanation:

\displaystyle \int_C 5y dx - 4x dy

Using Green's theorem

\displaystyle \int_C F dr=\int\int \left[\frac{\partial{Q}}{\partial{x}}-\frac{\partial{P}}{\partial{y}}\right]dA

\displaystyle Q=-4x\\ \frac{\partial{Q}}{\partial{x}}=-4 \displaystyle P=5y\\ \frac{\partial{P}}{\partial{y}}=5

\displaystyle Area=\frac{1}{2}bh=\frac{1}{2}\times2\times4=4

Since the region is oriented clockwise

\displaystyle \int_C F dr=-\int\int (-4-5)dA

\displaystyle \int_C F dr=\int\int 9dA=(9)(4)=36

Example Question #1 : Line Integrals

Compute \displaystyle div \vec{F} for 

\displaystyle \vec{F}=yz\ln(x)\vec{i}+2xyz\vec{j}+z\vec{k}

Possible Answers:

\displaystyle div\vec{F}=-\frac{yz}{x}+2xz

\displaystyle div\vec{F}=\frac{yz}{x}+2xz+1

\displaystyle div\vec{F}=2xz+1

\displaystyle div\vec{F}=0

\displaystyle div\vec{F}=\frac{yz}{x}

Correct answer:

\displaystyle div\vec{F}=\frac{yz}{x}+2xz+1

Explanation:

In order to find the divergence, we need to remember the formula.

Divergence Formula:

\displaystyle div\vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}, where \displaystyle P\displaystyle Q, and \displaystyle R correspond to the components of a given vector field \displaystyle \vec{F}=P\vec{i}+Q\vec{j}+R\vec{k}.

 

Now lets apply this to our situation.

 

\displaystyle div\vec{F}=\frac{\partial}{\partial x}\Big(yz\ln(x)\Big)+\frac{\partial}{\partial y}\Big(2xyz\Big)+\frac{\partial}{\partial z}\Big(z\Big)

\displaystyle div\vec{F}=\frac{yz}{x}+2xz+1

Example Question #1 : Line Integrals

Compute \displaystyle div\vec{F} for 

\displaystyle \vec{F}=x^2z\ln(y)\vec{i}+x2^{y^2}z\vec{j}+x^x\vec{k}

Possible Answers:

\displaystyle div\vec{F}=-2xz\ln(y)-2\log(2)xyz2^{y^2}

\displaystyle div\vec{F}=2xz\ln(y)

\displaystyle div\vec{F}=0

\displaystyle div\vec{F}=2\log(2)xyz2^{y^2}

\displaystyle div\vec{F}=2xz\ln(y)+2\log(2)xyz2^{y^2}

Correct answer:

\displaystyle div\vec{F}=2xz\ln(y)+2\log(2)xyz2^{y^2}

Explanation:

In order to find the divergence, we need to remember the formula.

Divergence Formula:

\displaystyle div\vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}, where \displaystyle P\displaystyle Q, and \displaystyle R correspond to the components of a given vector field \displaystyle \vec{F}=P\vec{i}+Q\vec{j}+R\vec{k}.

 

Now lets apply this to our situation.

 

\displaystyle div\vec{F}=\frac{\partial}{\partial x}\Big(x^2z\ln(y)\Big)+\frac{\partial}{\partial y}\Big(x2^{y^2}z\Big)+\frac{\partial}{\partial z}\Big(x^x\Big)

\displaystyle div\vec{F}=2xz\ln(y)+2\log(2)xyz2^{y^2}+0

\displaystyle div\vec{F}=2xz\ln(y)+2\log(2)xyz2^{y^2}

Example Question #1 : Divergence

Compute \displaystyle div\vec{F} for 

\displaystyle \vec{F}=xy\vec{i}+xz\vec{j}+xyz\vec{k}

Possible Answers:

\displaystyle div \vec{F}=y

\displaystyle div \vec{F}=x

\displaystyle div \vec{F}=y(1+x)

\displaystyle div \vec{F}=1

\displaystyle div \vec{F}=(1+x)

Correct answer:

\displaystyle div \vec{F}=y(1+x)

Explanation:

In order to find the divergence, we need to remember the formula.

Divergence Formula:

\displaystyle div\vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}, where \displaystyle P\displaystyle Q, and \displaystyle R correspond to the components of a given vector field \displaystyle \vec{F}=P\vec{i}+Q\vec{j}+R\vec{k}.

 

Now lets apply this to our situation.

 

\displaystyle div\vec{F}=\frac{\partial}{\partial x}\Big(xy\Big)+\frac{\partial}{\partial y}\Big(xz\Big)+\frac{\partial}{\partial z}\Big(xyz\Big)

\displaystyle div \vec{F}=y+0+xy

\displaystyle div \vec{F}=y+xy=y(1+x)

Example Question #4 : Line Integrals

Find \displaystyle div\vec{F}, where \displaystyle \vec{F}=xyz\vec{i}+x^2z^{-4}\vec{j}+y^{-10}z^{3}\vec{k}

Possible Answers:

\displaystyle div\vec{F}=yz+\frac{3z^2}{y^{-10}}

\displaystyle div\vec{F}=yz+z^4+\frac{3z^2}{y^{10}}

\displaystyle div\vec{F}=\frac{3z^2}{y^{10}}

\displaystyle div\vec{F}=yz+\frac{3z^2}{y^{10}}

\displaystyle div\vec{F}=xyz+\frac{3z^2}{y^{10}}

Correct answer:

\displaystyle div\vec{F}=yz+\frac{3z^2}{y^{10}}

Explanation:

In order to find the divergence, we need to remember the formula.

Divergence Formula:

\displaystyle div\vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}, where \displaystyle P\displaystyle Q, and \displaystyle R correspond to the components of a given vector field \displaystyle \vec{F}=P\vec{i}+Q\vec{j}+R\vec{k}.

 

Now lets apply this to our situation.

 

\displaystyle div\vec{F}=\frac{\partial}{\partial x}\Big(xyz\Big)+\frac{\partial}{\partial y}\Big(x^2z^{-4}\Big)+\frac{\partial}{\partial z}\Big(y^{-10}z^3\Big)

\displaystyle div\vec{F}={yz}+0+3y^{-10}z^2=yz+\frac{3z^2}{y^{10}}

Learning Tools by Varsity Tutors