Calculus 1 : Differential Functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1601 : Calculus

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

 

Now find the derivative of the function; this will be solved for the value(s) found above.

Of the solutions,  satisfies the mean value theorem by falling within 

Example Question #2 : The Mean Value Theorem

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

 

Now find the derivative of the function; this will be solved for the value(s) found above.

, which falls within the interval , satisfying the MVT.

Example Question #582 : Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of   on the interval 

Then take the difference of the two and divide by the interval.

 

Now find the derivative of the function; this will be solved for the value(s) found above.

Of these solutions  satisfies the MVT by falling within 

Example Question #1 : The Mean Value Theorem

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

Now find the derivative of the function; this will be solved for the value(s) found above.

There are multiple solutions; within the interval  satisfies the mean value theorem.

Example Question #583 : Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

 

Now find the derivative of the function; this will be solved for the value(s) found above.

Of these two solutions  validates the mean value theorem by falling within 

Example Question #1 : The Mean Value Theorem

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

Now find the derivative of the function; this will be solved for the value(s) found above.

This solution falls within , validating the mean value theorem.

Example Question #584 : Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

Now find the derivative of the function; this will be solved for the value(s) found above.

 is the only real solution, but it falls within , validating the mean value theorem.

Example Question #401 : How To Find Differential Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

Now find the derivative of the function; this will be solved for the value(s) found above.

There are multiple solutions to this function

However, to validate the mean value theorem, the solution must fit within the interval . The only solution which does this is 

Example Question #581 : Functions

Let  on the interval . Which of the following values  does not satisfy the mean value theorem for this function and interval?

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of   on the interval 

Then take the difference of the two and divide by the interval.

 

Now find the derivative of the function; this will be solved for the value(s) found above.

This is best found using a numerical solver

Though there are multiple options, the ones which fit within 

 are . All others, while solutions to the equation, do not satisfy the mean value theorem.

Example Question #403 : How To Find Differential Functions

Let  on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.

Possible Answers:

Correct answer:

Explanation:

The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval  for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.

Meanvaluetheorem

In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.

Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.

First, find the two function values of  on the interval 

Then take the difference of the two and divide by the interval.

 

Now find the derivative of the function; this will be solved for the value(s) found above.

 

There are multiple solutions of the form ; however, the only one which satisfies the mean value theorem and  falls within  is .

Learning Tools by Varsity Tutors