All Calculus 1 Resources
Example Questions
Example Question #571 : Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
which falls within the interval , satisfying the MVT.
Example Question #381 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
which falls within the interval , satisfying the MVT.
Example Question #382 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Of the two slutions falls within to satisfy the MVT.
Example Question #383 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
which falls between , satisfying the mean value theorem.
Example Question #1 : The Mean Value Theorem
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
, which falls between , satisfying the MVT.
Example Question #384 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
This would best be solved using a numerical solver
which falls within , satisfying the mean value theorem.
Example Question #385 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
which falls within , satisfying the mean value theorem.
Example Question #3 : The Mean Value Theorem
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
which falls within the interval satisfying the mean value theorem.
Example Question #391 : How To Find Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Of these two solutions, fits within , satisfying the mean value theorem.
Example Question #1602 : Calculus
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
which falls within , satisfying the mean value theorem.
Certified Tutor
Certified Tutor