All Basic Geometry Resources
Example Questions
Example Question #3 : How To Find If Rectangles Are Similar
Which of the following is not a necessary condition for rectangles A and B to be similar?
Ratio of length to width is equivalent
All angles are equal
Each side on each rectangle has a corresponding side on the other rectangle
Corresponding sides of A and B are of equal length
Corresponding sides of A and B are of equal length
All sides being equal is a condition for congruency, not similarity. Similarity focuses on the ratio between rectangles and not on the equivalency of all sides. As for the statement regarding the equal angles, all rectangles regardless of similarity or congruency have four 90 degree angles.
Example Question #3 : How To Find If Rectangles Are Similar
What value of makes the two rectangles similar?
For two rectangles to be similar, their sides have to be proportional (form equal ratios). The ratio of the two longer sides should equal the ratio of the two shorter sides.
However, the left ratio in our proportion reduces.
We can then solve by cross multiplying.
We then solve by dividing.
Example Question #4 : How To Find If Rectangles Are Similar
The following images are not to scale.
In order to make these two rectangles similar, what must the width of rectangle on the right be?
For two rectangles to be similar, their sides must be in the same ratio.
This problem can be solved using ratios and cross multiplication.
Let's denote the unknown width of the right rectangle as x.
Example Question #5 : How To Find If Rectangles Are Similar
Two rectangles are similar. One has an area of and the other an area of . If the first has a base length of , what is the height of the second rectangle?
The goal is to solve for the height of the second rectangle.
Similar rectangles function on proportionality - that is, the ratios of the sides between two rectangles will be the same. In order to determine the height, we will be using this concept of ratios through solving for variables from the area.
First, it's helpful to achieve full dimensions for the first rectangle.
It is given that its base length is 5, and it has an area of 20.
This means the first rectangle has the dimensions 5x4.
Now, we may utilize the concept of ratios for similarity. The side lengths of the first rectangle is 5x4, so the second recatangle must have sides that are proportional to the first's.
We have the information for the first rectangle, so the data may be substituted in.
is the ratio factor that will be used to solve for the height of the second rectangle. This may be substituted into the area formula for the second rectangle.
Therefore, the height of the second rectangle is 10.
Example Question #6 : How To Find If Rectangles Are Similar
There are two rectangles. One has a perimeter of and the second one has a perimeter of . The first rectangle has a height of . If the two rectangles are similiar, what is the base of the second rectangle?
The goal of this problem is to figure out what base length of the second rectangle will make it similar to the first rectangle.
Similar rectangles function on proportionality - that is, the ratios of the sides between two rectangles will be the same. In order to determine the base, we will be using this concept of ratios through solving for variables from the perimeter.
First, all the dimensions of the first rectangle must be calculated.
This can be accomplished through using the perimeter equation:
This means the dimensions of the first rectangle are 10x5. We will use this information for the ratios to calculate dimensions that would yield the second rectangle similar because of proprotions.
is the ratio factor we will use to solve for the base of the second rectangle.
This will require revisiting the perimeter equation for the second rectangle.
Example Question #2 : How To Find If Rectangles Are Similar
The attached image represents the dimensions of two different brands of manufactured linoleum tile. If the two tiles are similar, what would be the length of the large tile, given the information in the figure below?
Two rectangles are similar if their length and width form the same ratio. The small tile has a width of and a width of , providing us with the following ratio:
Since the length of similar triangles is twice their respective width, the length of the large tile can be determined as such:
Example Question #1 : How To Find If Rectangles Are Similar
Are these rectangles similar?
no
yes - scale factor
yes - scale factor 2
yes - scale factor
no
To determine if these rectangles are similar, set up a proportion:
This proportion compares the ratio between the long sides in each rectangle to the ratio of the short sides in each rectangle. If they are the same, cross-multiplying will produce a true statement, and the rectangles are similar:
These rectangles aren't similar.
Example Question #1 : How To Find If Rectangles Are Similar
Are these rectangles similar?
yes - scale factor 2.5
yes - scale factor
no
yes - scale factor 3
yes - scale factor 2.5
To determine if the rectangles are similar, set up a proportion comparing the short sides and the long sides from each rectangle:
cross-multiply
since that's true, the rectangles are similar.
To find the scale factor, either divide 25 by 10 or 7.5 by 3. Either way you will get 2.5.
Example Question #411 : Plane Geometry
Figure NOT drawn to scale
Refer to the above figure.
True or false: Rectangle Rectangle .
False
True
False
Two rectangles are similar if and only if their sides are in proportion. Specifically,
Rectangle Rectangle
if
Since is located at the point , it follows that and . Since is located at the point , it follows that and . Substituting in the aforementioned proportion statement, we get
.
Reducing to lowest terms, this is
.
This is false, so Rectangle Rectangle .
Example Question #11 : Quadrilaterals
Consider the similar rectangles and shown here. The lengths of the following sides are given:
What is the length of the side ?
Comparing the sides and , we see that is the length of , as shown here:
.
Since these two rectangles are similar, all pairs of corresponding sides are similar. Hence, the ratio of to is also , and we can calculate the length of by setting up and solving a proportion:
.
Hence, the length of the side is units.
Certified Tutor