Basic Geometry : Plane Geometry

Study concepts, example questions & explanations for Basic Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #42 : How To Find An Angle Of A Line

Lines

Refer to the above diagram.

True or false: \displaystyle \angle CBE and \displaystyle \angle CBD comprise a linear pair.

Possible Answers:

True

False

Correct answer:

False

Explanation:

By definition, two angles form a linear pair if and only if 

(1) they have the same vertex;

(2) they share a side; and,

(3) their interiors have no points in common.

\displaystyle \angle CBE is the angle with vertex \displaystyle B; its two sides are the rays \displaystyle \overrightarrow{BC} and \displaystyle \overrightarrow{BE}, which have endpoint \displaystyle B and pass through \displaystyle C and \displaystyle E, respectively. \displaystyle \angle CBD has the same vertex; its two sides are the rays \displaystyle \overrightarrow{BC} and \displaystyle \overrightarrow{BD}, which have endpoint \displaystyle B and pass through \displaystyle C and \displaystyle E, respectively. \displaystyle \angle CBE and \displaystyle \angle CBD are indicated below in red and green, respectively:

Lines 1

The angles have the same vertex and they share a side. However, the interior of \displaystyle \angle CBE is entirely contained in the interior of \displaystyle \angle CBD. The angles do not comprise a linear pair.

Example Question #61 : Lines

Lines

Refer to the above diagram. 

True or false: Quadrilateral \displaystyle BEFD can also be called Quadrilateral \displaystyle EFDB.

Possible Answers:

False

True

Correct answer:

True

Explanation:

A quadrilateral is named after its four vertices in consecutive order, going clockwise or counterclockwise. Quadrilateral \displaystyle BEFD is the figure in red, below:

Lines 1

\displaystyle E\displaystyle F\displaystyle D, and \displaystyle B also name the four vertices in clockwise order. It follows that Quadrilateral \displaystyle EFDB is another valid name for the figure.

Example Question #1591 : Basic Geometry

Lines

Refer to the above diagram. 

True or false: Quadrilateral \displaystyle BEFD can also be called Quadrilateral \displaystyle DFEB.

Possible Answers:

False

True

Correct answer:

True

Explanation:

A quadrilateral is named after its four vertices in consecutive order, going clockwise or counterclockwise. Quadrilateral \displaystyle BEFD is the figure in red, below:

Lines 1

 

\displaystyle D\displaystyle F, \displaystyle E, and \displaystyle B name the four vertices in counterclockwise order. It follows that Quadrilateral \displaystyle DFEB is another valid name for the figure.

Example Question #41 : How To Find An Angle Of A Line

Transversal

Refer to the above diagram. \displaystyle \angle 1 \cong \angle 2

True, false, or inconclusive: \displaystyle m || n

Possible Answers:

False

True

Inconclusive

Correct answer:

Inconclusive

Explanation:

\displaystyle \angle 1 and \displaystyle \angle 2 form a pair of vertical angles, and are consequently congruent whether or not it holds that \displaystyle m || n. Therefore, whether the lines are parallel cannot be determined.

Example Question #1592 : Basic Geometry

Transversal

Figure NOT drawn to scale.

Refer to the above diagram. \displaystyle \angle 2 \cong \angle 3

True, false, or inconclusive: \displaystyle m || n.

Possible Answers:

True 

False

Inconclusive

Correct answer:

True 

Explanation:

\displaystyle \angle 2 and \displaystyle \angle 3 are both inside the two lines \displaystyle m and \displaystyle n, and they appear on opposite sides of transversal \displaystyle t. They are thus alternate interior angles, by definition, and since they are congruent, then by the Converse of the Alternate Interior Angles Theorem, it follows that \displaystyle m || n,

Example Question #1591 : Basic Geometry

Lines

Refer to the above diagram. 

True or false: \displaystyle \bigtriangleup ACF and \displaystyle \bigtriangleup A FC refer to the same triangle.

Possible Answers:

True

False

Correct answer:

True

Explanation:

 The letters in the name of a triangle name its vertices, so \displaystyle \bigtriangleup ACF refers to the triangle with vertices \displaystyle A\displaystyle C, and \displaystyle F. A triangle is named after its vertices in any order, so this triangle can also be called \displaystyle \bigtriangleup A FC.

Example Question #1593 : Basic Geometry

Transversal

Figure NOT drawn to scale.

Refer to the above diagram. 

\displaystyle \angle 1 and \displaystyle \angle 2 are supplementary. 

True, false, or inconclusive: It follows that \displaystyle m || n.

Possible Answers:

False

True

Inconclusive

Correct answer:

Inconclusive

Explanation:

\displaystyle \angle 1 and \displaystyle \angle 2 form a linear pair of angles and are supplementary regardless of whether or not \displaystyle m || n

Example Question #1593 : Basic Geometry

Transversal

Figure NOT drawn to scale.

Refer to the above diagram. 

\displaystyle \angle 1 \cong \angle 4

True, false, or inconclusive: it follows that \displaystyle \angle 2 \cong \angle 3

Possible Answers:

Inconclusive

False

True

Correct answer:

True

Explanation:

\displaystyle \angle 1 and \displaystyle \angle 2 form a linear pair of angles, and are therefore supplementary; the same holds for \displaystyle \angle 3 and \displaystyle \angle 4. Angles that are supplementary to congruent angles are themselves congruent, so, since \displaystyle \angle 1 \cong \angle 4, it follows that \displaystyle \angle 2 \cong \angle 3.

Example Question #51 : How To Find An Angle Of A Line

If lines A and B are parallel, what is the measurement of \displaystyle \angle6?

1

Possible Answers:

\displaystyle 102^\circ

\displaystyle 89^\circ

\displaystyle 61^\circ

\displaystyle 82^\circ

\displaystyle 78^\circ

Correct answer:

\displaystyle 78^\circ

Explanation:

1

Notice that \displaystyle \angle4 and \displaystyle \angle6 are corresponding angles. This means that they possess the same angular measurements; thus, we can write the following:

\displaystyle \angle4=\angle6

Now, notice that \displaystyle \angle4 and the provided angle of \displaystyle 78^\circ angle are vertical angles. Vertical angles share the same angle measurements; therefore, we may write the following:

If \displaystyle \angle4=\angle6 and \displaystyle \angle4=78^\circ, then \displaystyle \angle6=78^\circ

Example Question #51 : How To Find An Angle Of A Line

Angle \displaystyle \angle ABC measures \displaystyle 20^{\circ}

 \displaystyle \overrightarrow{BD} is the bisector of \displaystyle \angle ABC

 \displaystyle \overrightarrow{BE} is the bisector of \displaystyle \angle CBD

What is the measure of \displaystyle \angle ABE?

Possible Answers:

\displaystyle 5^{\circ}

\displaystyle 15^{\circ}

\displaystyle 10^{\circ}

\displaystyle 40^{\circ}

\displaystyle 30^{\circ}

Correct answer:

\displaystyle 15^{\circ}

Explanation:

Angle pic

Let's begin by observing the larger angle. \displaystyle \angle ABC is cut into two 10-degree angles by \displaystyle \overrightarrow{BD}. This means that angles \displaystyle \angle ABD and \displaystyle \angle CBD equal 10 degrees. Next, we are told that \displaystyle \overrightarrow{BE} bisects \displaystyle \angle CBD, which creates two 5-degree angles.  \displaystyle \angle ABE consists of \displaystyle \angle ABD, which is 10 degrees, and \displaystyle \angle DBE, which is 5 degrees. We need to add the two angles together to solve the problem.

\displaystyle \angle ABE=\angle ABD+\angle DBE

\displaystyle \angle ABE=10^{\circ}+5^{\circ}

\displaystyle \angle ABE=15^{\circ}

Learning Tools by Varsity Tutors